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ABSTRACT 

T h e  s t r eng t h  of precipi tousness ,  p re sa tu ra t edness  and  sa tu ra t ednes s  of  

NS~ and  NS~ is s tudied.  In par t icular ,  it is shown tha t :  

(1) T h e  exac t  s t r eng th  of "NS A for a regular  tt > max(A, R1)" is a it+ 
(w, # ) - repea t  point.  

(2) The  exac t  s t r eng th  of "NS~ is p r e sa tu ra t ed  over inaccessible ,~" is 

an  up- repea t  point.  

(3) "NS~ is s a t u r a t e d  over inaccessible ,r implies an  inner  mode l  wi th  

3~o(~) = ~++. 

Introduct ion  

The strength of the following basic hypothesis on NS~ (the nonstationary ideal 

over ,;) and NS~ (the nonstationary ideal over ,~ restricted to the cofinality A) 

will be studied: 

1. Precipitousness (i.e., the generic ultrapower is well founded). 

2. Presaturatedness (i.e., precipitousness + all the cardinals except perhaps ,~ 

itself are preserved in the forcing extension by NS~). 

3. Saturatedness (i.e., the forcing with NS~ satisfies a+-c.c.). 

1. PRECIPITOUSNESS. By Jech-Magidor-Mitchell-Prikry, "NSs 1 precipitous" 

or "NS:+ precipitous for regular a" is equiconsistent with a measurable. By [G2], 

"NS~~ 2 precipitous" is equiconsistent with a measurable and "NSs2" is equicon- 

sistent with a measurable of order 2. 
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Models with NS~ precipitous for ~ > R2 were constructed in [G3] and [F-M-S] 

from strong assumptions. T. Jech [J2] gives a lower bound on the strength of 

"NS~ precipitous". 

For X C_ ~ denote by NS~ IX the nonstationary ideal restricted to X, i.e. the 

set of all A C_ ~ such that  A N X is nonstationary. The following will be proved 

here: 

(a) The strength of "NS~ or NS~ I(Singular cardinals) is precipitous for an 

inaccessible ~, A < ~" is at least an (w, < ~)-repeat point. 

(b) The strength of NS~ ~ precipitous, ~ = #++, c f#  = w + GCH is at least an 

(w, < #)-repeat point. 

(c) The exact strength of "(NS~ or NS~ [ {a < ~ [ cf a < #} is precipitous) 

+~ = #+ for a regular # > max(A, R1) + GCH" is an (w, #)-repeat point. 

(d) The existence of an (w, ~++l) : repeat  point is sufficient for "NS~ precipitous 

+n  is an inaccessible + GCH". 

(e) The existence of an (w, # + 1)-repeat point is sufficient for "NS~ is precipi- 

tous +~ = #+ + GCH". 

2. AND 3. PRESATURATEDNESS, SATURATEDNESS. By S. Shelah IS], NS~+ 

cannot be presaturated for A < ~. Models with NS~ 1 saturated were constructed 

by J. Steel and R. Van Wesep [S-V], H. Woodin [W] using AD and M. Foreman, 

M. Magidor and S. Shelah IF-M-S] from a supercompact cardinal. By W. Mitchell 

[Mi2], presaturatedness of NS~+ implies an inner model with 3~ O(~;) = ~++. For 

inaccessible ~, T. Jech and H. Woodin [J-W] showed that NS~ [(regular cardinals) 

can be saturated from one measurable and by [G3] NS~ IS can be saturated for 

a set S stationary in every cofinality < ~, from O(~) = ~;. It will be shown here 

that 

(a) The exact strength of "NS~ presaturated for A < ~r over inaccessible ~" is 

an up-repeat point. 

(b) The exact strength of "NS~ presaturated over inaccessible n" is an up- 

repeat point. 

(c) "NS~ is saturated for inaccessible ~" implies an inner model with 3~ O(~) = 
~++. 

The paper is organized as follows. In Section 1 various notions of repeat 

points are introduced. Using the Core model techniques, lower bounds on the 

strength of the existence of the ideals are found in Section 2. Precipitous ideals are 

constructed in Section 3 and the presaturated ideals in Section 4. The situation 
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over a measurable cardinal is studied in Section 5. A knowledge of Mitchell's 

Covering Lemma [Mi3,4] is required for Section 2. Sections 3 and 4 can be read 

independently of Section 2, but we assume there a familiarity with forcings of 

[G2,3,4]. For most notation and basic definitions we refer to T. Jech [J1] and A. 

Kanamori and M. Magidor [K-M]. 

ACKNOWLEDGEMENT: We would like to thank W. Mitchell for his explanations 

on the Core model. We are grateful to M. Magidor for many valuable discussions 

concerning the problems considered in this paper. Special thanks are due to 

the referee of the paper for supplying a long and detailed list of remarks and 

corrections. 

1. Repeat points 

The notion of repeat point was originally introduced by Radin JR] in order to 

preserve the measurability under the Radin forcing. The existence of his repeat 

point required a Pa(~)-measurable cardinal. Mitchell [Mil] used a weaker notion 

which does not require even O(n) = n++. Let us define some intermediate repeat 

points which will be used in Sections 2, 3 and 4. 

Let 9 ~ be a coherent sequence of ultrafilters of the length g e. 

Definition 1.1: Let ~ be a cardinal < ~f  and a, 8 < O~(~), 8 > 0. 

(1) (Mitchell [Mil]) a is a weak  repeat point for f l  at n if for each set A in 

)r(n, a) there is/3 < a such that A E ~-(~,/3). 

(2) a is a 5-repeat point if for each set A in N{~'(~, 7): a _< "r < a + 8} there 

is/3 < a such that  A E N{~'(n, ~/):/3 _< -y < ~ + 5}. 

(3) a is a < 8-repeat point if a is a 5~-repeat point for every 5 ~ < 8. 

(4) a is an u p - r e p e a t  point if for each set A in F(n ,  a)  there is/3 :> a such 

that  A E Jr(n,/3). 

We will be interested in 5-repeat points for relatively small 5's like 8 = w2, 

8 = ~+, 8 = n+ + 1 etc. These 8's can be represented by the same function in all 

the ultrapowers of ~(5 r)  with I ' (~,  7) for 7 < Off(n). Let us call ordinals with 

this property u n i f o r m l y  r e p r e s e n t a b l e .  

LEMMA 1.2: Suppose that a is a ~-repeat point. Then, for every uniformly 

representable ~ <_ ~, a is an ~-repeat point. 

Proof'. Suppose that  ~? < ~. Let g be a function which uniformly represents 7/. 
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Let A E N { ~ ' ( ~ , 3 0 ] a < 3 , < a + r / } .  Consider a set B = { 5 < ~ I  there is 5* < 

OJr'(5) such that  5"+g(5) _< O~(6) and A N 5  e M{.T'(5, "/)] 5* < "~ < 5"+g(5)}} .  

The set B belongs to every measure $'(~, p) with p _> a + ~?. Hence there is 

f~ < a such that  

A u B e n{J: (~ ,  ~)l Z --- ~ < Z + ~} �9 

If A E N{~'(n,7)] ~ _< ~/ < ~ + ~}, then we are done. Otherwise for f], f~ _< 

< f~+~ ,  B E F ( a , ~ ) .  But then there is 13" < ~ so that  ~* +~? < ~ and 

A e N{$'(,~,'r)l ~* _< ~ < ~* + ~}. . 

In particular, if a is an r/-repeat point then a is a weak repeat point. 

The proof of Lemma 1.2 gives a little more. 

LEMMA 1.3: Let a < ~ be ordinals. Suppose that for every A E 5r(~, ~) there is 

fl < a such that A E F(,~, ~3). Let ~ be uniformly representable and a + ~? <_ ~. 

Then a is an r/-repeat point. 

LEMMA 1.4: I f  a is an up-repeat point then a is a 5-repeat point for every 

uniformly representable 5 < a. 

Proof." Pick g~: ,~ -+ ~ which uniformly represents 5. Suppose that  A E 

N{gV(,r a _< 7 < a + 5} and for each ~ < a we have A ~ N{.~(~,~/)[ ~ _< 

7 < / 3+  6}. Define a set B = {~- < ,~[ for every ~ < O~( r )  we have 

A n t  ~t N{7(r,~)l  ~ < ~ < ~ + ~(~)}}. 

Then B E $ ' (~ ,a) .  So for some r/ > a, B E .~(tc, r/). But then, in the 

ultrapower with 9r(tr A ~t N{~'(~,~)I a < ~, < a + 5} which is impossible. 

Contradiction. I 

Actually, we shall see that  the presence of an up-repeat point implies a lot of 

repeat points. 

The following lemma is clear 

LEMMA 1.5: Suppose that 2 ~ = ,~+ and 0~(,~) = ~++. Then every sufficiently 

large a < ~++ is an up-repeat point and in fact every sufficiently large ~ < 

~++ has the property that for every set A E ~'(~, a), A belongs to 9c(,~,/3) for 

unboundedly many ~'s below ,~++. 

LEMMA 1.6: Let a be the least up-repeat point. Then a is a limit ordinal and 

cf a _ ~+. 
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Proof: Let us show first that a is a limit ordinal. Suppose otherwise. Let 

a = a* + 1 and B C ~'(n,a*).  Then A = {T < n 10P(T)  = V* + 1 for some T* 

and B M 7- E ~(~-, r*)} is in ~'(~, a). There exists/3 > a such that A E ~'(tr 

So, B E F ( a , / 3 -  1) a n d / 3 -  1 > a*. Hence a* is an up-repeat point; which is 

impossible. 

So a is a limit ordinal. Suppose that cf a = A < n +. Pick a cofinal sequence 

(cil i  < A) to a. For every i < A let Ai E ~'(n, ci) and A~ ~ F(n,/3) for/3 > c~. 

Let A = {T < aI (a) OJ=(T) is a l imi t  ordinal ofcofinality A, ifA < a o r o f  

cofinality T, if A = a and (b) there exists a cofinal sequence (~-~ ] i < cf O>-(T)) 

to O>-(r) SO that  Ai N r  E ~(T,'r~) for every i < cf O~(T)}.  Then A �9 ~ ' (~,a) .  

Hence, for some /3 > a, A �9 9v(a,/3). Then in the ultrapower with ~(a, /3) ,  

A~ �9 5r(a, ~-i) (i < A) and (vii i < A) is cofinal in/3. So for some io every i > io 

is above a. But A~ ~ F(~ ,  3') for 3' > 3'~ and 3'~ < a. Contradiction. I 

LEMMA 1.7: Suppose that 2 ~ = ~+, a is a weak repeat point and there is no 

a+-repeat  point below a. Then either 

(1) cf a = ~+ 

o r  

(2) there is a'  < a such that cf a' = ~+ and a < ~ + ~+. 

Proo~ Suppose otherwise. Let a* _< a be the minimal ordinal such that  a* + 

a+ > a and/3 +/3 ~ < a* for every/3 < a* and/3'  < a+. Pick a cofinal sequence 

(/3il i < cf a*) to a*. Let (A. I ~, < a+) be an almost decreasing generating 

family for .~'(~, a).  Since a - a* < a+ and .~'(a, 3'1) % ~-(a, 3'2) for 3'~ ~ 3`2, there 

exists i0 < cf a* so that ~+ of A~'s belong to measures below /3io- But then 

every A �9 ~-(~, a)  belongs to some ~-(a,/3) with/3 </3io. Hence by Lemma 1.3, 

/3~ is ~+-repeat point. Contradiction. I 

LEMMA 1.8: Let a be an up-repeat point for J~ at a. Suppose that (~ < O3e(g) 

is minimal so that a is an up-repeat point for .~ I (~, a). Then for every/3, 

a <_/3 < ~, every A �9 .~(~,/3) there is 3  ̀< a such that A �9 :F(~, 3`). 

Proof'. Suppose otherwise. Then there is/3, a _< /3 < ~, A ~ ~'(~,/3) so that 

A ~ 5r(~, 3`) for every 3' < a. Let 

B = {T < ~[ for every r '  < O'e(r,) -we have A ~ ~- r ~ ( r ,  ~-')}. 

Then B E .3"(a,(~). So there is a* such that /3 < a* < 5 and B e ~ (~ , a* ) .  
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Hence, in the ultrapower with ~-(~, a*), A ~ .~'(a, r ' )  for every r '  < a*, which is 

impossible, since A �9 ~'(~,/3) and fl < a*. I 

The lemma implies that every/3 with a _</3 < 6 is a weak repeat point. Let 

us show more. 

PROPOSITION 1.9: Let a be the/east  up-repeat point for ~ at a. Suppose that 

6 <_ 0~ (~ )  is minimal so that a is an up-repeat point for ~ [ (,~, 6). Then every 

/3 with a <_/3 < 6 is an up-repeat point for :~ at ~. 

Proof: Let a </3 < 6 and B �9 .T(,~, fl). Set 

D = {6 < a[ B �9 t ( a ,  6)}. 

By Lemma 1.6, D ~ 0. Let us split the proof into two cases: 

(1) D is unbounded in a, 

(2) D is bounded in ~. 

CASE 1: D is unbounded in a. Then the set A = {r < ~[ for every r '  < Oi-(r) 

there exists T" such that r < r "  < O~-(T) and B M r E 5r(r, r")} is in 9r(~r a). 

So there is 7 > /3 + 1 such that A E b~(~, 7). Then the following holds in the 

ultrapower with .~(~, "l). For every r '  < 3, there is r "  with 7 > r "  > r '  such that 

B �9 ~(~r r") .  Hence there is r"  >/3 such that B �9 ~(~r T"). 

CASE 2: D is bounded in a. Let 6 = UD.  Let As �9 ~'(~,6) be such that 

A~ ~ ~'(~, 3,) for every "l > 6. Set A = {T <: tr there exists a maximal ~ < O~-(r) 

s.t. Asrqr  �9 2 ( r ,$ )  and B n r  r Jr(r,r ')  for every r '  , /~ < r < O2(r)}.  

Then A �9 9r0r a). So for some 3' >/3, A �9 ~'(Jr 3'). There exists a maximal 

< ~, such that As �9 Jr(to, 6) and B ~ .f(~;, r ' )  for every r '  with/~ < r '  < 7. 

But by the choice of As, 15 = 6. On the other hand 3, >/3  > 6 and B �9 5r0r 

Contradiction. I 

The following follows from the proof of Proposition 1.9. 

COROLLARY 1.10: Let a , 6  be as in 1.9. Then for every/3 with a <_ /3 < 6 

and for every B �9 T(~,/3) there are unboundedly many 6's below a such that 

B �9 a~(~, 6). 

PROPOSITION 1.11: Let a , 6  be as in 1.9. Define J:o to be a set of all A c_ ~r so 

that, for some 7 < a, A �9 n~_>s>~ jc(,r 6) and let "~I be a set of all A C_ ~ so 

that, for some 3, < 6, A �9 N-y<s<a F(~,  6). Then ~o = ~1. 
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Proof." By Corol lary 1.10, 9Vo C_ 3v~. Let us show the opposi te  direction. Let  

A E Y'l. Suppose A ~ 7-0. Then  for every 6 < a there is 6 ~ such tha t  6 < 6 ~ < 

and A ~ ~-(~,6 ' ) .  Set B = {r  < K t for every 6 < O Y ( r )  there is 6 ' , 6  < 6' < 

O'#(r) s.t. A M r r .T(T, 6')}. 

Then  B E 9r(~, a) .  Pick 6 < 6~ so tha t  A E br(~, 3') for every % 6 _< 3' < ~. For 

some 5" and 6 < 5" < ri, B E 9v(~, 5"). But  then for some 6' with 6 _< 6' < 6", 

A ~ .*'(~, 6'). Contradict ion.  I 

Note tha t  3v0 is a normal  filter over a:. The  p rope r ty  above looks similar to the 

Radin  repea t ing  measure  which is s t ronger  than  O(~)  = K++. 

PROPOSITION 1.12: Let a < ~ <_ OS-(t~) be ordinals with cf a > w. Define 7-o, 

F1 as in 1.11. If.To = .~  and there is no up-repeat point below ~, then a is an 

up-repeat point. 

Proof." Suppose otherwise.  Let Am E ~-(n, a )  not belong to any ~-(~, / / )  with 

~ q > a .  Let  D = { ~ < a l A ~ E g v ( ~ , ~ ) } a n d 6 = U  D. 

Suppose tha t  6 < a .  Pick a set Aa E iv(n, 6) and A~ ~ Uu>a .~ (n ,  tt). Set 

E = {r  < n ] there is ~ < O f ( v )  such tha t  (i) Aa n T E 9r(r ,~) ,  (ii) Aa N r 

U,>a 9v( v, #),  (iii) Am N r ~ U~>a Y'(r, it)}. 
Then  E E $ ' (~,  3') for every 3' with ~ _> 7 > 6. So E E $'1. Pick some 7 > 

s.t. E E 5c(~, 3'). Then  in the u l t rapower  with ~ ' (~,  3'), ~ = 6 but  Am E Y'(~, a )  

and a < 3'. Contradict ion.  So 6 = a .  Note tha t  As  can be replaced by any 

A E Y'(~, a) .  Hence a is a weak repea t  point.  

The  set A* = {r  < ~ I there  exists the largest measure  to which A ~ A r  belongs} 

is in $1. Since ~-0 = ~'1, there is 3'0 < ~ so tha t  A* E ~ o < ~ < ~  ~ '(~,  3')" Then  for 

every 7, % < 3' < a there is 3'* < 3' s.t. Am E F ( ~ ,  3'*) and Am does not belong 

to any 3c(~, 3") wi th  3'* < 3" < 3'. Define an increasing sequence ( %  I 0 < n < w> 

of ordinals > % so tha t  for every n, 3'* < %+1.* I t  is possible since 6 = a .  Let  

7~ = On<~ % .  Then  3'~ < a and A* ~ ~'(~,  3'~). Contradict ion.  I 

PROPOSITION 1.13: Let ~ be the least up-repeat point for ~ a t  n and let 6 be 

uniformly representable. Then the set  of fl's below a such that 

(a) fl is a &repeat point; 

(b) e.ery set A e Z') I 9 < < Z + 6} belongs to 3") I 3' < 
3" < 3" + 6} for unboundedly many "~ 's in/3, 

is a club in a. 
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Proof." Suppose otherwise. Let S = {/3 < a [ /3 does not satisfy (a) or (b)}. 

Find s ta t ionary $1 C_ S and /3o < a s.t. for every /3  E S1 there exists a set in 

N{Y(a , /3 ' )  [ /3 <_ /3' < /3 + 6} which does not belong to N{Y(a ,  ~t) [ .y _< .y, < 

? + 5} for any %/30 < "Y </3 .  Pick a set Ao E Y(a,/30) which does not belong 

to any measure above/3o. Consider a set B = {p < a ] there exists the maximal  

Po < Of'(P) s.t. Ao M Po E jr(p, Po) and for unboundedly many/3 ' s  in Of'(p) 

there exists a set in ~{jr(p,p')  [ ~ _< p' < / 3  + g~(p)} which does not belong to 

N{jr(p, '~ ' )  [ "y <- ~/' < "~ + g~(P)} for every % with ~i o < "~ < 13}, where g~ is a 

function uniformly representing 6. Clearly, B C Y(a ,  a) .  So B C j r (n ,  a t) for 

some a I > a .  Pick ~, so tha t  a <_ /3 < a '  and for some A E M{jr(a,/3') I ~3 _< 

/3' < / 3  + 5} does not belong to N{ j r ( a ,  "y') l "7 -< 3/' <: "Y + 5} for every % with 

/30 < "~ < /3. Now, as the proof  of Proposi t ion 1.9, we obtain the contradict ion.  

I 

Definition 1.14: Let a ,  6 be ordinals below O~(a ) ,  6 > 0 and let A ~ a be a 

regular cardinal. Then  a is a (A,5)-repeat point if (1) cf a = A, (2) a is a 

S-repeat point  such tha t  every A E N{Y(n ,  a I) I a <_ a ~ < a + 5} belongs to 

N{j r (  a, 7') [ 3' <_ "~' < ~/+ 6} for unboundedly many "y's in a.  a is a (A, < 6)- 

repeat  point  if for every 61 < 6, a is a (A, 6~)-repeat point. 

It follows by Lemma 1.6 and Proposi t ion 1.13 tha t  there are unboundedly  

many (A, 6)-repeat points below the first up-repeat  point for any regular A _< a 

and uniformly representable 6. 

LEMMA 1.15: Suppose tha t  ),1 < A2 < a + are regular cardinals, ~ is uniformly 

representable and a is a (A2, 1)-repeat point. If  there is no up-repeat point, then 

there are unboundedly many (As, 5)-repeat points below a. 

Proof'. Choose an increasing unbounded in a sequence (ai  [ i < A2) such tha t  for 

every A E j r ( a , a ) ,  for every i < A2 there is/3 E (ai,ai+l) so tha t  A E jr(a , /3) .  

For every i < A: pick a set Ai E j r (n ,  a~) which does not belong to any measure 

above ai .  

Le t /3  = U i < ~  a~ and A E N{jr (a , /3 ' )  I B -< /3' < / 3  + 6}. Fix some io < A1. 

Consider the set B = {p < a [ there exists the maximal  Po < OY(P) s.t. A~ o Mp E 

j r (a ,  po); for some % "Yo < "Y < O~'(P) AM6 E N{jr(p,~[')[~ 4_ ~/~ < "y + g~(p)}}. 

Clearly B E j r (g ,  a) .  Then  for some T with aio < v < alo+l ,  B ~ j r (n ,  v). By the 

choice of B, then there is % a~ o < "~ < r so tha t  A E ~ { j r ( a ,  "~) [ "r _< "~ < "r+5}. 

It  means  t ha t / 3  is a (A~, 6)-repeat  point. I 
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LEMMA 1.16: Suppose there is no up-repeat point. Let A be a regular cardinal, 

a be a weak repeat  point and ( a i [  i < A) be an increasing sequence of ordinals 

below a so that for every A E :F(~, a), every i < A, A E U{gr(~, j3) [ a~ < / 3  < 

ai+ l }. Then ~J~<~ ai is a (A, 6)-repeat point for every uniformly representable 6. 

Use the proof of Lemma 1.15. 

2. T h e  lower  b o u n d s  

Let NS~ ~ denote the ideal of all w-nonstationary subsets of ~, i.e., all the subsets 

X of ~ so that  X N {6 < ~ I cf 6 = R0} is nonstationary. 

In this section we are going to prove the following. 

THEOREM 2.0: Let ~ be a regular cardinal above R2 and NS~ ~ be precipitous. 

Then 

(1) / f ~  = A ++ for A of cofinality > w and A ~ = A, then there exists an 

(w, A +)-repeat  point. 

(2) I f  ~ = A ++ for A of cofinality ~ and p~ < A for every # < A, then there 

exists an (w, < A)-repeat point. 

(3) I f  ~ = A + for a weakly inaccessible A and g~ < A for every # < A, then 

there exists an (w, A)-repeat point. 

(4) I f  ~ is a weakly inaccessible and I~ ~ < ~ for every/z < ~, then there exists 

an (w, < ~)-repeat point. 

(5) I f  after the forcing ~o with NS~ , ~ >_ ((2~)+), then there exists an up-repeat 

point. 

(6) I fNS~ is ~+-saturated, then (3a O(a) = a++). 

Note that  if ~ = A + for a singular A, then by [Mi2] 3~ O(a) = a ++ since the 

generic ultrapower with NS~ ~ collapses A + to A. 

Our basic assumption will be that  there is no inner model of 3a O(a) = a ++. 

Suppose that  some regular cardinal ~ in K:(.~) changing its cofinality still re- 

mains of cardinality above 2 ~~ . We will consider elementary submodels N -< H ,  

for some # > ~ such that  ~ N  C_ N, IN[ < [~[, ~ E N and U ( N  n ~) = ~. By 

Mitchell [Mi2-4] there is a function h N E K~(3~), a sequence of indiscernibles C N 

and p < INI + such that  N N H~ n K:(~) is contained in hN"(p; C N ). Let us refer 

to Mitchell's [Mi4] for basic definitions and facts on such models. 

By a submodel we will always mean some N as above. Denote by ~lv the least 

ordinal in hN'(a) .  We will often drop the upper index N when it will be clear 
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to which N everything is related. 

LEMMA 2.1: Suppose that ~ is a regular cardinal in IC( ~ )  which became singular 

in V.  Assume that for some A, [~[ > 2 ~ and cf~ _< A +. Suppose that C is a 

club of  ~ in a mode1 V1 ~ Z F C  + ~ is regular, E(:F) C_ V1 C_ V,  such that all 

the points of C of cofinality v are regular in IC(:~), for some v <_ )~+. Then there 

exists a cofinal in ~ sequence (Ti [ i < cf ~) SO that for all i < cf 

(i) �9 c ,  

(ii) U(C n ~'i) = 7-i, 

(iii) cf ~-i _> A ++, 

(iv) for every submodel N with C, (T~ [ i < w) �9 N there is i0 < w such that 

all Ti 'S (i _> i0) are limit indiscernibles for ~g (i.e., there are unboundedly 

many indiscernibles for ~N in U(N n Ti)). 

Remark: As the referee of the paper pointed out, the assumption on C can 

be weakened by removing V1 and requiring that otp(C n D) = ~ for every club 

D �9 g( .~) .  

Proof'. Let N be a submodel so that C �9 N and ~N C_ N. 

For an ordinal j3 < a set j3 (~ =/3, /3 (~+1) = U (h"(f ~(~) + 1) n a) and ~3 (~) = 

Un<~ ~ 5(n). Define a club Ch in /~(~) as follows: 

Ch = {a < ~; l for every ~ < a, f l ( ' o ) < a } .  

Pick 8 < ~ big enough to that there are no indiscernibles for ordinals > ~ inside 

the interval [6, ~). It is possible since indiscernibles for ~ are unbounded in n; see 

[Mi3, Lemma 6.3]. 

CLAIM 2.1.1: Let T* < ~ be an indiscernible for -g and T** be the least in- 

discernible for -g above it. Then (U(N N r**) n ( C  h - (T* -~- 1)) = 0 and 

(7-* + 1) (~) > U (N  n r**). 

Proof: It is enough to show that (r* + 1) (~) _> U(N n z**). Let us prove by 

induction that for every ~ E N, T* _ ~ < T** there is n such that U (h"(~ + 1) n 

T**) <_ (T* + 1)(n). 

Suppose that this holds for every ~ < ~. If ~ is not indiscernible, then for 

some ~' < ~, ~ E h " ( ~ ' + l )  nr**.  So ~ _< ( T * + I )  '~ for some n < w. Hence 

U (h"(~+l)nT**) _< ( r*+l )  n+l. If~ is an indiscernible, then it is an indiscernible 
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for some a(~) E h"(~' + 1) where ~' < ~. But then ~ < a(~) < U (h"(~' + 1) n 

~-**) _< (r* + 1) n for some n. I 

Let C ~ be the set of limit points of C. Consider C ~ O Ch. It is a club in V1. 

Let r* be an indiscernible for ~ so that ~ > r* > max (5, (2~)+). Let T** be the 

least indiscernible for ~ above T*. 

CLAIM 2.1.2: Ch n C' M (T*, r**] = 0. 

Proof" Suppose otherwise. First note that C ~ is unbounded in 7-**, Since 

otherwise U(C'NT**) E g and by Claim 2.1.1 ( U ( N O r * * ) ) n ( C h - - ( r * + l ) )  = 0. 

Let /z = U(C  n r** N N) = U(r** a N). By the proof of Claim 2.1.1, # is a 

singular cardinal in/(:(.T), cf # _> A + > R0, since AN _C N. Recall that  all points 

of C of some fixed cofinality v _< A + are regular in/E(.T). Then cf # > v, since 

# E C and it is singular in K:(~). Let C1 E K:(.T) be a club in # consisting of 

singular in K(.~) ordinals. Then C N C1 contains an element of cofinality v. But 

every such element of C is regular in K:(9~). Contradiction. I 

Hence above max (5, (2~) +) every element of g n c h  NO' is a limit indiscernible 

for ~. 

Let us turn now to the construction of the sequence (Ti I i < cf n). We shall 

find one r satisfying the conditions (i), (ii) and (iii) for N. It will be clear that  

it is possible to find such 7- above any p < n. 

Let 7- be the least indiscernible for ~ so that otp(C'NChnT) > (2)') +. Then by 

Claim 2.1.2, r is a limit indiscernible for ~ and r E C ~ n Ch. If cf r < A +, then 

N contains a cofinal in r sequence. So there is a sequence {Ti [ i < cf T} C_C_ N of 

indiscernibles for k unbounded in T. But then for some ia < cf T, otp(C ~ n Ca O 

Ti0) > (2X) +, which contradicts the choice of r.  

Hence cf r > A ++. 

Let show now that the sequence (rl I i < cf ~) which was constructed for N is 

good for any other submodel N ~ with (ri ] i < cf ~) E N ~. 

Pick a submodel N* which contains N, g ' ,  {hN}, {hN'}. By Mitchell [Mi4], 

for some i0 < cf ~ all ri 's with i __k i0 are indiscernibles for ~lv* in N*. It implies 

that for some il < cf ~ all ~'i's with i _> il are indiscernibles for ~N' in N ~. I 

LEMMA 2.2: Suppose that ~ is a strong limit cardinal singular in V bat regular 

in 1C(~-). Suppose that C is a club of  ~ in a model V1, IC(~-) C V1 c_ V, 

V1 ~ Z F C  + r~ is regular such that all the points of  C of some fixed cofinality ~, 
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are regular in 1E(~). Then there exists a cofinal in ~ sequence (Ti [ i < cf ~) SO 

that for all i < cf 

(i) ~-~ e C, 

(ii) (.J(C N T,) = ~'i, 

(iii) the set {cf Ti [ i < cf a} is unbounded in ~, 

(iv) for every submodel N with C, (~'i I i < cf a) E N there is io < cf a such 

that all Ti 'S (i > io) are limit indiscernibles for ~N. 

Proof: Let (Ait i < cf a) be a cofinal sequence in a. For every i < cf ~ use 

Lemma 2.1 to pick a sequence (T~ ] j < cf g) satisfying (|)-(iv) for A = Ai. Let 

N be a submodel containing all the sequences (~-~ [ j < cf a), i < cf a. For every 

i let j ( i )  < cf a be such that  (Tj I J > j( i))  is a sequence of indiscernibles for 

~N and V ~ j(~) > Ai. Set ~'i = z~(i) for every i. Clearly (Ti [ i < cf a) satisfies the 

conditions (i)-(iii). But (iv) is also satisfied since (Ti [ i < cf a) is a sequence of 

indiscernibles for ~ in N which is unbounded in ~. | 

LEMMA 2.3: Let ~ ,C be as in Lemma 2.2. Suppose that N is a submodel 

containing C, (Ti [ i < cf ~) and so that ~N C_ N for some regular A. Then 

C N N contains unboundedly many indiscernibles for ~N of cofinaIity A. 

Proo~ It follows from Lemmas 2.1 and 2.2, since cf ( U ( N  n ~i)) >_ A + and the 

indiscernibles for glv form a A-club by (iv) and [Mi4]. | 

LEMMA 2.4: Let ~, C be as in Lemmas 2.1 or 2.2. Let A be a regular cardinal 

such that In[ > 2 ~. Then there exists a submodel N so that C N N contains 

unboundedly many indiscernibles for ~n of every cofinality <_ A +. 

Proo~ By Lemma 2.3, it is enough to find indiscernibles of cofinality A +. Pick 

the sequence (~-i I i < cf ~) as in Lemma 2.2. Let N* be a submodel containing 

C, (T~ I i < cf n) and such that  ~N* C_ N*. Find a submode l  N such that  

N D_ N* tA {h N" } and ~N C_ N. Without loss of generality assume that (~-i [ 

i < cf ~) is a sequence of indiscernibles for ~g in N and for ~N* in N*. Set 

~ = U(N*N~-~) for i < cf ~. I f c f  #i > A +, then C N ~ i  contains elements 

of cofinality A +. Assume that  for every i < cf ~ cf ~ = A +. It is enough to 

show that  a final segment of (#i [ i < cf ~) consists of indiscernibles for ~N in N. 

Suppose otherwise. Then for an unbounded set I C_ cf ~ all #i (i E I) are not 

indiscernibles for ~ .  By removing an initial segment of I,  we can assume then 

that  #i 's are indiscernibles for ordinals below ~N. Pick for every #i some ui < #, 
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such that  [J (hN"(vi) M ~) > #i. For every i E I there exists an indiscernible ~ 

for ~N"  vi < ~i < #{, by (iv) of Lemmas 2.1 and 2.2. Now a final segment of 

(~ [ i E I> are still indiscernibles for ~N in N, by [Mi4]. But it is impossible 

since U (hN"(vi)  M t~) > #i > ~.  Contradiction. 

The following is a standard fact about generic ultrapowers and it will be used 

frequently below. 

LEMMA 2.4.1: Suppose F is a precipitous filter over ~. Let H be a generic 

ultrapower extending F and i~: V -+ M = ult(V, bl) the corresponding generic 

ultrapower. 

(1) Then ~ is the critical point ofi~. 

(2) I f  for some 5, {a < ~ [ c f a  = 6} �9 U, then, in M,  cf~  = 6. 

THEOREM 2.5": Suppose GCH. I fNS~  is precipitous for ~ > lq2 and p+ < ~, 

then there exists a weak repeat point in lE(.~). 

Proof  By Mitchell [Mi2], we can assume that ~ is an inaccessible or the successor 

of a regular cardinal. Consider the set S = {a < O~(~) [ some A �9 (NS~) + forces 

that the measure ~(,~, a)  is used to move ~ in the generic ultrapower}, i.e. it is 

used first in the ultrapower of/r 

Let a = min S. Suppose that a is not a weak repeat point. Then pick a set 

A �9 :%(~, a)  consisting of regular cardinals in 1E(~) such that A ~t ~(~,  a ' )  for 

a' < a. Consider the set B = {5 < ~ I 5 is a regu la r  in /C(_~) and there is 

6' < of:(5)  so that  A M 5 �9 .T(~, 6')}. 

Then A U B �9 A~_>~ Jr( n, ~) and A tA B ~ LJ~<o $'(t~, ~). Since a = min s ,  

A tAB contains a tt-club. Let C be a club so that its points of cofinality # are in 

A tAB. Then every 5 �9 C of cofinality # will be regular in/(:(Y). 

Let M be a generic ultrapower defined by a generic embedding using the mea- 

sure 9v(~, a). Then C, A, B �9 M. By Mitchell [Mi2], .~'M [ (g ~_ 1) = $" [ (~, a),  

and P(~)  n / E ( ~ )  = P(~)  M K:(.~ M) where 5 r g  is the maximal sequence for the 

core model inside M. 

Now apply the previous lemmas inside M where V1 = 1E(TM)(c) .  Pick N to 

be as in Lemma 2.4. Assume that A U B E N. Then, by Lemma 2.4, there exists 

an indiscernible in C for ~N of cofinality # above the support of A U B. But it 

implies (see [Mi4]) that A U B �9 9r(,~, t3) for some t3 < O J=~ (~) = a, which is 

impossible. Contradiction. | 

* A version of this theorem was proved jointly with M. Magidor. 
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Suppose now that  NS~ ~ is precipitous for ~ > (2~~ +. Let us show tha t  there 

exists more than  just a weak repeat  point in/r  Our aim will be to prove the 

following: 

THEOREM 2.5.1:  Suppose tha t  NS~ ~ is precipitous for t; > (2~~ +. Then 

(a) i f~  = A ++ for A of cofinality > w and A ~ = A, then there exists an (w, A+)- 

repeat  point, 

(b) i f ~  = A + for a weakly inaccessible A so that #~ < A for every # < A, then 

there exists an (w, A)-repeat point, 

(c) (Mitchell [Mi2]) if~ is a successor of  a singular cardinal, then 3~ 0 (  ~ ) = ~** 

in an inner model, 

(d) if  ~ is a weakly inaccessible and #~ < ~ for every # < ~ then there exists 

an (~, < ~)-repeat  point, 

(e) i f ~  = A ++ for A ofcofinali tyw so that #~ < A for every tt < A, then there 

exists an (w, < A)-repeat point. 

By Mitchell 's covering lemma, for any N -~ H~+ such tha t  ~ N  C_ N,  IN[ < [~] 

and N G ~ is cofinal in ~, N n H~ N/E(9 ~) is contained in hNPI(pN;cN), where 

pN < i g l +  h N is the Skolem function and C g the sequence of indiscernibles. 

The sequence C N consists of critical points of the i teration of the least missing 

in N mouse (more precisely, in the transit ive collapse of N).  It  turns  out [Mi4] 

tha t  the measures of the mouse below ~ are the right one, i.e. they are on the 

sequence :~. It  is not  t rue in general over ~ itself. 

But  if it is possible to pick N -< HA+ for some ), > tr which also is changing 

its cofinality such tha t  ~ E N,  N n ~ is cofinal in ~, IN[ < ~ and ~ > pg, then 

N N HA n IE(~) c_ hNII(pN;C N) and the measures over ~ given by the mouse 

are the right ones. Let us call an ordinal 6 (like ~ above) satisfying this a good 

ordinal and a submodel  witnessing it a good submodel  for 6. By the proof  of 

Lemma 2.1, all interesting 6's in C of the lemma are good, i.e., for N -< H~+, 

6 > pN. Let us use this in order to  find a generic ul trapower in which ~ is good. 

Let v be such tha t  ~ = L, ++ and cf ~, > Ro or v = 2 a0 otherwise. Set Y = {6 < 

~: cf 5 = w and every submodel  of cardinali ty _< ~, is contained in a good for 6 

submodel}.  

CLAIM: Y is stationary. 

Proof: Suppose otherwise. Let E be a club in ~ disjoint to Y. For every 5 in E,  

cf 6 = w, let N~ be a model  which is not contained in any good for ~ submodel.  
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Now use a club C and a submodel  N as in the proof  of L e m m a  2.1 wi th  E and 

the funct ion taking ~ to N~ in N.  The  contradict ion follows now easily. I 

Let us call a a relevant ordinal  and .T(n, a )  a relevant measure,  if some condi- 

t ion s t ronger  than  Y forces tha t  the measure  9v(t~, a )  is used first in the generic 

embedding  to move n. Clearly, Y IF-"k is good in the generic u l t rapower  and 

every submodel  of  cardinal i ty  < v is contained in a good submodel  of cardinal i ty  

v there" where v ++ = ~ or v = 2 ~o. 

Let B E n{3c(~,  7) I ~' is a relevant ordinal}. Then  (t~ - Y) U (B M Y) contains 

a club, since otherwise Y - B = X is s ta t ionary.  Pick some generic ultrafi l ter  G 

with X C G. Let  jc:  V ~ M ~- V~ /G  be the generic e lementa ry  embedding.  

Find a such tha t  9v(~, a )  was used first to move ~. But  then c~ is a relevant 

ordinal. So B C ~ ( ~ , a ) .  But  then  t~ E jG(B)  and t~ E j G ( X ) .  Hence B N X  ~ 0. 

Contradict ion.  

Further ,  let us always assume for B E n { ~ ( g ,  •) ] "~ is a relevant ordinal} tha t  

B C_ Y. Also by a club C contained in B we mean  C C_ (~ - y )  U (B N Y). 

For a model  N as in the Mitchell covering l e m m a  we are going to use the 

function /~g(_ )  and the coherence function c N (  - ,  - , - )  for f l  in t roduced in 

[Mi2-4]. For an indiscernible 7 C N , / ~ g ( v )  denotes the measure  over ~N for which 

7 is an indiscernible (more precisely, the index of this measure) .  Recall tha t  ~N 

is the least ordinal  in h N "(~). The  coherence function C N (~N, fiN(T), ~N(t~))(t~ ) 
gives the ordinal  ~ s.t. 7 is an indiscernible for 9t'(a, ~). 

Let a be a relevant ordinal. Force with NS~ ~ Let iv: V * M = ult(V, G) C_ 

V[G] be a generic embedding  such tha t  ~-(~, a )  is used first to move a in ia I~(:T). 

Then,  in M ,  n changes its cofinality to t~o and the Mitchell covering l e m m a  can 

be applied there. Note tha t  7)(a) N V C_ P ( a )  N M.  Working in M we considered 

an ordinal  ~ which is the s u p r e m u m  of all /~ < a = 0ia(~')(a) sat isfying the 

following: 

For every B E n{ .T(g ,  7) I "~ relevant} and every submodel  N '  of H~+ there 

are a club in V, C _C B, and a good for ~ submodel  N D N '  of H:~+ so t ha t  there  

exists a set  s C_ N n ( a  -- ~),  Is] > ~0 s.t. for every ~ C s, N has unboundedly  

m a n y  in n indiscernibles T G C for RN satisfying C N (kN, /3N(r ) , /3N(n) )  (n) > 

and cf M T = R0. 

Note  tha t  by L e m m a  2.3, a > 0. Let  q~ be a name  of such a__. 

For a relevant ordinal  a set & = min{/~ I some condit ion forces "/~ = ~ "  }. Let  

a* = rain{& I a is a relevant ordinal}. Denote  by s ~ the least relevant a so t ha t  
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{ • /  ~ O / ' t  . 

L e t  ol min be the least relevant ordinal. Clearly, a* < a rain _< a ~ 

By the choice of a* and [Mi4, Lemma 1.6], there exist a set B E N{gv(~, 7) I 7 is 

a relevant ordinal}, a submodel N '  of H M and ~ < ~ so that for every club C E V, 

C C_ B and every good for ~ submodel N D N'  of H M there are only countably 

many indiscernibles v, ~ < -r E C for ~zv satisfying C N (~N,~N(T),/3N(I~))(I'~) ~_ 
a* and cf Z = W. Let us always assume below that  every set picked in N{~v(n, 7) I 

7 is a relevant ordinal} is a subset of this particular set B, all the indiscernibles 

are above ~ and are outside of this countably many. 

Further, by a good submodel we shall mean a good submodel for ~. 

Let us assume that there is no up-repeat point. 

LEMMA 2.6: If  the ordinal Ot m i n  - -  a* is uniformly representable (i.e., it can 

be represented by the same function in all ultrapowers of K:(.~) by F(n,/3) for 

j3 < OY(~)), then a* is (c~ mi~ - a*) + 1-repeat point and every A E N{sr(~,/3) I 

or* </3  < a rain } reflects to unboundedly many in a* places. 

Proof: Suppose that g: ~ ~ tr uniformly represents a min --Og*. Let A E 

N{~(tr 3) I a* < / 3  <_ a mi"} and cd < a*. Pick a set A' E ~-(~,a ')  which 

does not belong to any measure above a'. Set B = {/5 < tr I there is 6" < OY(6) 

so that 6" + g(6) < O~(6), A M 6 E N{Y(6,/3) [ 6" _</3 < 6* + g(6)} and there is 

6' < 6 so that  A' M 6 E F(6, 6') and A ~ M 6 does not belong to any measure on 6 

above 6' }. 

Let A1 have the same definition as B but only 6* + g(6) = OP(6) and 6 E A. 

Then B belongs to every measure ~(n,/3) with/3 > O~ rain and Ax E 9r(tr amid). 

So A1 U B E ~{.T'(tc, a)  ] a is a relevant measure}. Let G c_ (NS~O) + be a 

generic ultrafilter such that  Jc: V ~ M ~- V~/G uses ~'(s:, a ~ to move ,r and 

a ~ = a*. By the choice of a*, there are a club C C_ to, C E V, points 

of cofinality w of C are in A1 U B and a good submodel N of HxM+ so that 

unboundedly many indiscernibles 7- E C for ?N of cofinality w come from the 

measures above a '  and below a*. Then A1 U B E 9v(,r for some a '  < /3  < a*. 

So A1 E 9v(tr ~) or B E ~(tr 13). But in any case the definition of AI, B implies 

thatAEN{.T ' (~ ,7)  l ~ ' < 7 < / 3 ' + ( a m i " - a * ) } f o r s o m e ~ ' , ~ '  <~'  <~. | 

The following lemma has the similar proof. 

LEMMA 2.7: I f  an ordinal 7 is uniformly representable and a* + 3' < o~min, then 

a* is a (7 + 1)-repeat point and every A E N{~(~,  ~3) I a* <_/3 < a* + 7} reflects 
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to unboundedly many in a* places. 

We are interested in showing the existence of 7-repeat points for 7 _~ n+ + ~+. 

Clearly, there is no problem to find uniformly representing functions for such 

ordinals. 

Suppose now that  there is no (w, x + + x+)-repeat  point. 

If w < cf a* < n+, then by 1.15 there is an (w, tr + + ~+)-repeat point. 

If cf c~* = ~+ and there is an increasing sequence ( ~  ] n < w) of ordinals 

below a* so that  every A E $'(~, a*) belongs to some measure in every interval 

( ~ ,  ~,~+1), then by Lemma 1.16 there exists an (w, n+ + n+)-repeat point. Hence 

there is a maximal set {/3o . . . .  , ~ - 1 }  such that  every A E ~(~ ,  a*) belongs to 

some measure in every interval (/~i,/~i+1) (i < n) and for every/3 ~ {/3o,.. . ,  3,~-1} 

there exists some AZ E 9v(n, (~*) such that  AZ ~ U {~'(n, 7) I/3 > 7 > max{j3i I 

~ < ~}. 

Let us choose a set A* E ~-(tr a*) which does not belong to any measure above 

OL*. 

Let B be the set consisting of all 6's below ~ so that  

(1) 0~-(6) > O, 

(2) cf 6 = w, 

(3) there exists the maximal 6* < O~(6) such that  

(a) A* M 6 E 9v(6, 6"), 

(b) cf 6 * = w ,  i f c f  c ~ * = w a n d c f  6 " = 6  + , i f c f  a * = x  +, 

(c) for every/3 < 6" there exists a good submodel N,  for 6, and there are 

unboundedly many in 6 indiscernibles r for ~N such that  

C N (~N, ~N(T), f iN(6)) (6  ) ~ 

(where ~N is the least ordinal > 6 in hN"(5)). 

By the definition of a*, A*UB E I a is a relevant ordinal}. Then 

there exists a club C E V whose points of cofinality w are in A* U B. Notice that  

if a* < (~min, then B alone contains an w-club. 

Let j:  V ~ M be a generic elementary embedding witnessing "&* = s ~  

Recall that  cf ~ = ~o in M. 

Pick in M a good submodel N -~ HA+ so that  

(a) INI = 2 ~~ N 2 2 ~~ if n is an inaccessible or ~ = u ++ for singular u and 

INI = u, N _D v if ~ = u ++ for a regular u, 
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(b) 
(c) 
(d) 
(e) 

~N C N, 

a* , , ~ E N ,  

A * ,  B ,  C E N ,  

there exists 6 < ~ so that for every indiscernible 7- E C - 6 for g;N with 

cf 7" = Ro, for every ordinal/3 E /3N(~.) n N, either 

(i) 7" E B and cN(g;N,/3,/3N(7"))(7") > 7"* 

o r  

(ii) for every countable x C_/3N(T) --/3 there exist unboundedly many in 

7" indiscernibles 7"1 for ~N such tha t /3  < /3N(T1) < /3N(7) and 

< r X, 

where 7" is the largest ordinal < Off(r)  s.t. A* fl ~r E 9r(r, T*). 

The only nontrivial condition on N is (e). Since T E C some good for T 

Nr -< HA+ satisfies (e) for unboundedly many in r indiscernibles v2. N can be 

picked as a good submodel of H,+ satisfying (a)-(d) for/z  big enough in order 

to catch the function 7" --+ Nr. Such N will satisfy (e) since for every 7- as in (e) 

unboundedly many in r T2'S will be indiscernibles for the same measures in N 

and in N~, by [Mi4, Lemma 1.5]. 

Let (~-, I n < w) be the sequence of indiscernibles given by Lemma 2.1 and 

Ch be as in Lemma 2.1. We are dropping the index N for a while. Suppose that  

r0 > 6 for 6 as in (e). For n < w, let dn be the w-club in U (N  n Tn) consisting of 

indiscernibles of cofinality w in C M Ch n rn for ~. Since cf 7",~ > w, by removing 

an initial segment, we can assume that for every T < T ~ in d,~ and an indiscernible 

for ~ T" s.t. r < T" < r ' ,  /3(r) < /3(T') and/3(7"") < /3(r O. It follows by [Mi4, 

Lemma 1.6]. 

For an indiscernible # E C for ~ such that cf # = R0, let #* = Off(#) 

if # ~ B, otherwise let #* be the largest ordinal < Off(#) such that  A* Cl # E 

3r(#, #*). Denote by/3*(#) the corresponding to #* over ~, i.e. ordinal or more 

precisely the index of the measure/3 such that #* = C(~, /3, /3(#))(#). 

LEMMA 2.8: Suppose that cf a* = ~+. For every n < w, for every increasing 

sequence (#m,~ [ m < w) of elements of d,~ 
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Proof'. The right inequality holds by [Mi4, Lemma 1.6]. Let us prove the left 

inequality. Suppose otherwise. Then 

Denote U/~mn by #. Then c f#  = w. By the Weak Covering Lemma [Mil], 

cf/~ + > a~. Then cfc~* = ~+ implies cf/~* > w. Let us turn now to #,~,~'s. Since 

they form an increasing sequence in dn, the sequence (/3(~mn)lm < aJ) is also 

increasing. We replace every /3(#mn) by the corresponding ordinal over #, i.e. 

C(g,/3(Pmn),/3(P))(#). Denote C(g, /3(#-m), /3(#))(#)  by "Ym, and let 7 = U,~<~ 

%~. Then (%~lm < w) is an increasing sequence, and so cf'~ = w. Since we 

assumed /3*(#) _> Um<~/3(#m~), by transferring this to # we obtain #* > % 

Recall that /3*(#) is defined to be the ordinal/3 such that  #* = C(~, /3, /3(#))(#). 

But since cf#* ~ cf'y = w, p* > % Notice that  7 is in N since ~N C_ N a n d  

each "Ym is in g .  Then for every m < w, ~/,~ = C(~,/3(#,m), /3(#))(#) < #*. 

So the case (ii) of the condition (e) (for N) should hold. In particular, taking 

/3 = /3*(#) there, we will have unboundedly many in # indiscernibles r l  for 

such that /3*(#) < /3(T1) < /3(#). Pick some such rl above #on. Let m < ~v 

be so that #ran > T1. By the assumptions on dn, then/3(#m~) > /3(T1). Hence 

/3(#ran) >/3*(#). Contradiction. | 

LEMMA 2.9: Suppose that cf a* = ~+. For every n < w there exists a ~nal 

segment d~ of limit points of dn so that for every #, #' E din,/3*(#) =/3*(# ' ) .  

Proo~ Suppose otherwise. Then for every limit # E dn there is a limit #' E d n - #  

with/3*(#')  > ~*(p). But then also/3*(p') >/3(#) .  Since otherwise, by Lemma 

2.8,/3(#) > ~*(#') > 13"(#) which is impossible. 

Define an increasing sequence (tim I m < w) of limit elements of d,~ so that  

fl*(#m+l) > /3*(#m). Let # = Um<~ #m. But then, by Lemma 2.8, 

< U = U < 
m<w m<w 

which contradicts the definition of ~* (#). | 

So, inside every dn, ~* (#) is stabilized under the assumption of cf a* = ~+. 

Let us remove this assumption now. So suppose cf a* = w. Pick a cofinal 

sequence (a~ I k < w} to a* consisting of ordinals of cofinality > R0 so that  for 
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every k < w,/3 < a~r there unboundedly many in tr indiscernible for measures in 

the interval (/3, a~r Since cfa* = No, the choice of a* insures that it is possible. 

For every k < w pick a set A S E ~-(n, a~) which does not belong to any measure 

above a~. Assume that  for every 5 E B 5* = Uk<~ 5~r where 5~ is the maximal 

* /3* w) in the obvious measure s.t. 5 N A  k E 9r(5,5~). For # E C, define ( k ( # )  I k < 

way. 

Then the following analogs of Lemmas 2.8 and 2.9 hold. 

LEMMA 2.8.1: For every k ,n  < w, for every increasing sequence (#ran ] m < w) 

of elements of dn 

, 

LEMMA 2.9.1: For every k, n < w there exists a final segment d (k) of limit points 

ofd,~ so that for every # ,# '  E ~n,'~(k) /3~r (#) = /3.k(#,). 

But now using Lemma 2.9.1 we can stabilize step by step all/3~(tt) (k < w). 

So the following holds. 

LEMMA 2.9.2: For every n < w there exists a final segment d~ of limit points of 

dn so that for every # ,# '  E d~,/3*(#) =/3*(#'). 

Let us identify, from now on, d~ with dn for simplification of the notation. 

Denote also/3* (p) for # e dn by/3*. 

Notice that  the arguments above work still if we replace ~ by any 5 E d~ 

(n < w) with cf 5 _> Wl. Just instead of dealing with measures over ~ deal with 

measures over 5. 

Actually, if we restrict ourselves to 5's below ~, then the assumptions that 

N is good and it is of cardinality 2 ~~ are not used. 

Define, in V, A = a+ if ~ is an inaccessible and A = p if a = #+. Let g~ be 

a function which uniformly represents A. Let A E N{:~(~,/3) I a* _</3 < a* + A}. 

We like to find/3 < a* so that  A �9 N{$'(tr ]/3 _</3' </3 + A}. 

Set B(A) = {5 < ~ I there exists 5" < Os such that (1) it is largest 

s.t. A* .q 5 �9 J-'(5, 5"), (2) A M 5 �9 N{$'(5,/3) ] 5" _</3 < 5" + g~(~). Intuitively, 

B(A) takes care of relevant measures which maybe are above a* + A. Then 

A U B(A) E N{$'(~,/3) ]/3 is a relevant ordinal}. 

Let us assume that  points of the club C of cofinality w are in (A* U B) n 

( A u B ( A ) ) .  
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It  was shown above, that  for the model N, (13*(#))N's are stabilized. Our 

aim now will be to find ordinals t3" which do not depend on a particular model. 

The models we shall consider below will satisfy the conditions (a), (c)-(e) of the 

definition of N. So further, by a model we will mean a model satisfying (a), 

(c)-(e). Unions of elementary chains of good models will be used. We do not 

know whether such models are good. But what we had insured by picking the set 

Y to be in the generic filter is that  these models are contained in good ones. For 

a submodel N1 of a good model No and for an indiscernible # E No ;7 NI let us 

denote by ~No(p), ~Nl(p) .  Notice that,  by Mitchell [Mi4, Lemma 1.5], flNo(_) 

does not depend on particular good N1 _D No, at least a final segment of indis- 

cernibles. The lemmas above are valid for closed under w-sequences submodels 
N ~ of good models. Also for some nonclosed submodels N ~ of a good model d n , 

/3 *N' still may exist. 

Further, by a model we shall mean a fine submodel of a good model. Assume 

also for simplification of the notions that  ~ g  = n. 

LEMMA 2.10.1: For every N ~ there exists N D N ~ so that, for every N"  D_ N,  

/3 *N'' <_/3 *N for all but finitely many n's. 

Proof: Suppose otherwise. Define an elementary chain (Ni [ i < wl) so that  

(1) No is a counterexample, 

(2) "Ni+l D Ni+I, 

(3) h N'+' E N~+2, 

(4) Ni = (.Jj<i Nj for a limit i, 

(5) for infinitely many n 's  f~.~',+l > f~.N,, if ~ "  's exist, 

(6) Ni+l D Ni, 

(7) ((_J(Ni A 7n) [ n < w) E Ni+l. 

Set N = (-Ji<~l Ni. ~N C N, so (3*)g ' s  exist. For every i < Wl there is 

n(i) < w such that  all indiscernibles of Ni for ~ which are above Vn(0 are indis- 

cernibles of N for the same measures, since there exists a good model containing 

N and Ni. Find a s t a t i o n a r y  S C_ wl and no < w such that  for every i E S, 

n(i) = no. Suppose for simplicity that  no = 0. Since each d g is an increasing 

continuous union of (N~ N d N [ i < wl), 13 *~' and d N' are defined and dNn ' is 

almost contained in d N. Then ~N,  = 13~N. (~,~ [ n < w) e Ni+o. Consider 

Nio+l. Find nl  < w so that  all indiscernibles of Nio+l for a which are above 

r ~  are indiscernibles of N for the same measures. Fix some n < ~v above nl  



82 M. GITIK Isr. J. Math. 

such that ft. *N'~ > b *r''~ = j3 *N. If some # E d~ '~ is above r/n then ~3N(p) 

should be bigger than /hg(ff~), since (/3N(#)) * = f~ *N'~ > 13 *N. But then, by 

the definition of dn, (/~N(#))* .~ = ~3,, , which is impossible. So supd~ ~ = ~7,~. 

But supd g~~ = sup(N~0+l N ~-~) > ~7 since ~/,~ E N~o+~. Contradiction. | 

LEMMA 2.10.2: There exists a sequence ( ~  [ n < w) so that for every N '  there 

is N D_ N'  as in the conclusion of Lemma 2.10.1, so that ~ -- ~.N for all but 

finitely many n 's. 

Proof'. It is enough to prove the following: 

CLAIM: For every N '  there exists N D N ~ as in the conclusion of Lemma 2.10.1 

so that for every N"  _D N there is N ''~ D_ N "  satisfying j3 *r'''' = 13 *N for all but 

finitely many n 's. 

Proof." Suppose otherwise. Let No be a counterexample. For a model N D No 

denote by Z ( N )  a model N"  D N such that for every N'"  D_ N" ,  13 *~''' ~ ~.N 

for infinitely many n's. Define an elementary chain (N~ [ i < Wl) as follows: 

(1) N~ = LJj<i Nj for a limit i, 

(2) ~Ni+3 C_ Ni+3 is a good model, 

(3) h N'+s E Ni+4, 

(4) for a limit i, N~+I _D Ni is given by Lemma 2.10.1, 

(5) for a limit i, Ni+2 = Z(N~+I). 

Set N = LJi<~l Ni. As in Lemma 2.10.1, (/3") N' exists and/3 *N' = B.N for 

i in a stationary set S C_ wl. 

For i < wl denote (j3 *N' ] n < ~) by ~ if it is defined. Let ~ < ~3 j mean 

that, for infinitely many n's, j3 *N' < fl, N~. Then ~1 > ~ + 1  > ~ + ~ + 1  > . . .  > 

~+1  > " " ,  for a l imi t  i < wl. By the proof of Lemma2.10.1,  for i E S big 

enough ~ ~ ~+1.  By the choice of Ni+l then/5 *N' =/5~ N'+' for all but finitely 

many n's. But since ~*~' = ~.N = /3,N~ for all but finitely many n's, where 

i, j E S are big enough, ~+1  i ~j-I-1. Contradiction. | 

Remark: It is easy to make N in Lemma 2.10.2 closed under w-sequences. Just 

construct an elementary chain (Ni [ i < Wl) taking Ni+l to be as in Lemma 

2.10.2, ~N~+2 c_ Ni+2 for a limit i. N = LJi<~l Ni will be as required. 

We split the proof now into two cases: (1) a is accessible; (2) a is inacces- 

sible. 
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Suppose first that n = A + for A which is a successor of a regular cardinal 

of cofinality > w. Let A- denote the predecessor of A, i.e. A = (A-) +. Suppose 

A- = (A-) ~. 

PROPOSITION 2.10: a* is a A-repeat point.  

Proo~ Let us deal, for simplicity, with ~ = R3 and A = R2. 

We use M, N, (~N in  < w), (d~ In  < w), (fl* In  < w) etc. defined above, 

only suppose that  A, B ( A )  are also in N. Continue to work inside M. Suppose 

also that  mind N is above the supports of A, A*, B ,  B ( A ) .  

If for some n < 

A C N { Y ( K , a ) ] f i ~  _< a < fi* +w2} 

then we are done. Suppose otherwise. 

Define then 7~ to be the least ordinal between/~, an d / J ,  + w2 such that  

A ~ Y(a,  ~/~). Without loss of generality assume that A ~ Y(a,  "y~) implies that 

also A ~ Y(a,  "y) for every 7, ?~ <- ~/< w2. It was shown that y .  > ~,  for all but 

finitely many n's. Actually, it can be used to show that ~/,~ _> ]3" + Wl since N, a 

model of Lemma 2.10.2, can be chosen to be closed under w-sequences. 

Set 5~ = sup(/3(r) I T C (C ;3 Ch ;3 7,~+1) - mind N, T, is an indiscernible of 

N for a} for every n < w. W. 1. of g. assume that 

6n = sup{~3(T) I T e (C ;3Ch  ;3 Tn+l) - ~} for every ( c [mindn,Tn+l) .  

LEMMA 2.11: For every 6 < R2 for every N J there exists N D N ~ so that  

/3, N = j3* and 5ff >_ [3* + 6 for all but  finitely many  n 's. 

Proo~ Suppose otherwise. Pick 6 to be the minimal counter-example. Let 

N J be so that  for every N _D N t with 13" ~ = [3, for all but finitely many n's, 

5ff < + 5 for all but finitely many n's. Pick (5i I i < wi) to be a cofinal 

sequence to 5. If 6 is a successor ordinal then let 5~ = 5 - 1 for every i. Define 

now an elementary chain {Ni I i < wl) satisfying the following conditions: 

(1) No = N' ,  

(2) ~Ni+l C_ Ni+,, 

(3) h N'+I C N~+2, 

(4) N~ = ~Jj<i Nj  for a limit i, 

(5) fg, ~'+1 = ~,  for all but finitely many n's, 
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(6) Ni+, D_ Ni, 

(7) (U(Ni  N T) I ~ < ~> �9 N,+l, 

(8) 6, N'+' > ~* + 6i for all but  finitely many  n's.  

Set N = U i < ~ N i .  Find a s t a t i o u a r y  S C wl and no < w so tha t  for 

every i �9 S all indiscernibles of N< for ,~ above T,~ o are indiscernibles for N for 

the same measures.  As in L e m m a  2.10.1, then ~*~' /3 *~ , -- ~ for n > no, i �9 S. 

Pick i0 C S so tha t  (~n ] n < w) �9 Nio, where 7/~ = mind~.  As in L e m m a  
. N  �9 . N  

2.10.1 for every i >_ i0 there only finitely many  n ' s  such t h a t / 3  n �9 > r n . But  

/3 *N~+~ --/3,~ for all but  finitely many  n's.  Hence the maxinla l i ty  of r implies 

tha t  ~* -- ~*~'+~ =/3~, N for all but  finitely many  n's.  

Pick now a s e t  $1 C_ { i+1 f i �9 S - i o }  of cardinal i ty wl and  h i ,  no < n l  < w 

so tha t  for every i �9 S1 all indiscernibles of Ni for ~ above ~-~ are indiscernibles 

of N for the sanle measures.  Then  for all n > nl ,  i + 1 �9 S1 big enough s.t. 

(6~ I n < w) �9 Ni+a 6, N >_ /)* +6~. Hence 6, N >_ /3~: + 5  for every n > n l .  

Contradict ion.  | 

I t  is easy now to finish the proof  of the proposi t ion.  Let  7 = ~J~ ~,~. Then  

3' < w2 and so, by L e m m a  2.11, there exists N satisfying 6N > + 7 for all bu t  

finitely m a n y  n's.  Find all indiscernible 6 �9 N N C for ~ with /3N(6) > /3 *N + % 

where n is such tha t  r , - 1  is above the suppor t  of A, B(A).  Let N* D N be a 

good model  which defines f3g(--) .  Then  Y N• (~, [3N(6)) is the real Y(~, /3N(6)) .  

Also A U B(A)  �9 .T(~,/3~ N + 7). Contradict ion.  | 

Remark: The  proper ty  (A-)  ~ = A- (where (A-)  ++ = n) was used in the above 

proof  in order to apply  the Mitchell Covering L e m m a  where the submodels  are 

assumed to be closed under ~-sequences.  If it is possible to renmve this assump-  

tion f rom the Mitchell Covering Lemma,  then the above const ruct ion can be 

applied also for n = )~++ with cf A = ~ to produce a A+-repeat  point.  

Suppose now tha t  n is a weakly inaccessible so tha t  A ~ < n for every A < 

PROPOSITION 2.12: a* is a < n - repea t  point. 

Proo~ Let "y < n be  a regular  cardinal.  We would like to show tha t  a* is a 7- 

repea t  point.  If  there exists a good model  of cardinal i ty "~ then  the appl icat ion of 

L e m m a  2.9.2 to this model  gives the desired s ta tement .  In general we know tha t  

there  are good models  of cardinal i ty  2 r176 So let us pick a submodel  N of Hx+ 

(X large enough) for cardinal i ty  7 + containing (rn [ n < w), C, A* etc. Using 

L e m m a  2.9.2, find indiscernibles of N for n (#n I n < w) so tha t  ~-,~+l > #n > rn, 
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#n E C, cf #n = w and ~N (~n) --> ~*N (#n) +')/" Let No be a elementary submodel 

of N of cardinality 2 ~~ containing (#n ] n < w)7, C, A* etc. By Mitchell [Mi4], 

all but finitely many of #n's  remain indiscernibles for ~ in No. Let no be so that  

Tno > "y and for every n > no, #n is an indiscernible for ~ in No. 

The set A~ = {6 < ~ I there exists the maximal 6* < O~(6) s.t. A* M 6 E 

~-(5, 5") and O~-(6) > 5" + ~ }  is definable from "y and A* in/C(F) .  So its support  

is below ~-no in both N and No. Let n be above no. Then A~ E .T'N(tc, zN(tt,~)) 

and, hence, ttn E A~. But now, in No, ttn E A~ and it implies that  A~ E 

.~N~176 ). So j~*N~ (pn)-}- 7 ___ ~N~ And this is true for every n > no. 

The continuation is as at the end of the proof of Proposition 2.1. I 

The same argument applies to tc = A ++ with cfA = w and tt ~ < A for 

tt < A. So the following holds. 

PROPOSITION 2.13: Let ~ = A ++, cfA = w and #~ < A for every # < A. Then 

a* is < A-repeat point. 

Suppose now that  ~ = A + for weakly inaccessible A so that  #~ < A for 

every # < A. The arguments above show that  then a* is a < A-repeat point. 

If every submodel of cardinality < A is contained in a good submodel of 

cardinality < A, then an easy modification of these arguments gives that  a* is a 

A-repeat point. But we do not know whether this is the case. Below, we shall 

obtain the same conclusion restricting ourselves to good models of cardinality 

2~0. 

PROPOSITION 2.14: I f  ~ = A + for a weakly inaccessible A s.t. #~ < A for every 

# < A, then a* is a A-repeat point. 

Proof: Suppose otherwise. Without loss of generality suppose that  the set A 

(picked in the beginning) witnesses this, i.e., for every ~3 < a* there is some p < A 

so that  A ~ 5r(~:, 3 +  P). Also all T~'S may be assumed to be of cofinality A. Since 

otherwise, pick a submodel of cardinality < A which contains cofinal sequences to 

all of Zn'S of cardinality less than A. Then, as in Lemma 2.1, construct new 7n'S. 

If they are still of cofinality less than A, then continue the process. It  should be 

stabilized in less than (2 ~~ )+ steps. The stabilized ~-~'s will be of cofinality A. 

LEMMA 2.15: There exists a submodel N '  of  cardinality 2 ~0 so that for every 

p < A there are NII D_ N '  of  the same cardinality, no < w and the sequence 

of  indiscernibles of  N ' f o r  ~ in C (#,~ [ n >_ no) so that for every n _> no, 
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N t l  N H  
zN"(~t,~) -- Z* (#n) >_ P and Z* (#n) = Z*, where (~* I n < ~} is defined as 
in Lemma 2.10.2. 

The proposition follows easily from the lemma. Just otherwise pick for 

every n _> no, p~ < A, so that A ~ ~'(~;,13,~+p~). Set p = (.j,~p,~. Since 

A is a regular, p < A. Pick now N",  (#~[n > no) as in the statement of the 

lemma for this particular p. Then for all n's big enough #,~ E A. It implies that  

A E ~-(~, ~3N" (#,~)). But ~3N"(#n) --/5* >_ p. So A also belongs to .T(~, j3* + p). 

Contradiction. 

Proof of the lemma: Suppose otherwise. Then for every N'  of cardinality 2 ~~ 

there is p(N') < A so that for every N" D N'  of the same cardinality, every 

sequence of indiscernibles of N"  of a in C (#~ [ n < w), so that ~N" (#n) = 13", 

~N" (#,~) _ ~. < p(N') for all but finitely many n's. 

Let N', p(N') be as above. Denote p(N') simply by p. Define by induction 

an increasing continuous sequence of submodels (Ni [ i < p+) so that  

(1) N = N', 

(2) tNi[ < A for every i < p+, 

(3) for every i, Ni+l contains a submodel N~ of cardinality 2 u~ so that  

{U(Nif3T~) I n < w} C_ N~ and N~ has a sequence (#,~ I n < w> 

of indiscernibles for ~ in C so that for all but finitely many n's, p~ c 
N{ 

Tn+l \ U(Ni N r~+l) and Z* '(P~) = ~*. 

Set N = U{Ni I i < p+}. Consider the sequence (d N [ n < w) defined as 

in Proposition 2.10. Condition (3) insures that ]d N ] = p+. So, for every n, there 

exists ~/~ e d~ such that ~g(#)  _ ~,~r (#) > p for every #, # E C N N M r,~+l - ~ 

and ~N(#) >_ ~N(~) .  Let us define now a submodel N* of N of cardinality 2 u~ 

It will be the union of the increasing continuous chain (N~* ] i < wl>, which is 

defined as follows. Let k0 be the least so that  {~,~ [ n < ,;} C_ Nko. Set N~ 

to be a submodel of Nko of cardinality 2 ~~ containing {~/n I n < w} U No. Let 

~/o = y,~ for every n < w. For a limit i, let N* be Uj<i Nj*. Set ki = Uj<i kj and 

~/~ = Uj<i r/3~ �9 So N* c_ Nk,. Suppose that (Nj* [ j  < i}, (kj [ j  < i) are defined. 

Define Ni+l. For every n < w, let ~/~+1 be the minimal ~/E d~ - U(rn+l N N~+i) 

so that zg (y )  > J3N(~/~). Let ki+l be the least j > ki so that Nj _D {~/~+1 ] 

n < ,;}. Pick N*+I to be a submodel of Nk,+~ of cardinality 2 ~~ containing 

N* U N'kl U {r//+1 I n <  ~}. 

Clearly, {~//~ I i < Wl} C_ d N for every n. Also { ~  [ i  < wl} i s a c l u b i n  
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N* U ( N *  N rn+l) .  So some subclub t~ of it is contained in d~ . Since BN(~/~,) > 

~N(7/,~), ~N(r/~) -- fl*N (r/~) >_ p for every i < o;1- Consider  the set  Ap = {6 < ~ I 

there exists a m a x i m a l  6" < OY(5) so t ha t  A* n 6  E >-(6,6*) and this 6" satisfies 

6*+p  < 0>-(6)}.  I t  is de te rminab le  from A* and p. So s ta r t ing  with some no < o;, 

for every # E tn, # E Ap in N and, hence, in N*. So f iN ' (# )  > f l .N-(#)  --> 0. 

The  choice of p implies tha t  s ta r t ing  with  some n l  > no, fl.r~" (#) ~ fl~ for every 

# E t~. By  the choice of ~ ' s ,  then  ~ . N . ( # )  < ~ ,  for every n ___ n2 > nl .  

Denote  m i n t ~  by ~ .  Pick i < o;1 so tha t  {~n I n < w} C_ N*.  Consider  N~ 

and N*.  T h e y  are submodels  of a good model.  So, s t a r t ing  wi th  some n3 > n2 

all the indiscernibles of N ~ for tc above 7-~ are indiscernibles of N* for the same 

measures.  By the choice of N~, for every n _> n3, there exists #~ E 7-~+1 \ ~,, so 

tha t  ~.NI (#n) = ~*. Then,  ~.N- (#n) = 13" > fl.N- (r  So B N• (#~) > ~N" (~n). 

By the choice of d N" , this implies ~.N* (#,,) = ~.N* ( ~ ) .  Contradict ion.  I 

Let us show now tha t  unless there exists an (o;, n+ + tc+) - repea t  point  cf a* 

should be  o;. Suppose otherwise.  Then,  as it was shown after  L e m m a  2.7, there  

exists the max ima l  reflecting set { f l 0 , . . . , ~ , - 1 } .  Let  us assume for s implici ty  

t ha t  n <_ 1. Denote  ~o by a** i f n  = 1 and let a** = 0 if n = 0. 

Until  now we have deal t  wi th  one club C. In order  to get the cont radic t ion  

we shall use some different clubs. But  first let us prove the following. 

LEMMA 2.16: There  exists N so that/ 'or every N ~ D_ N the set of  indiscernibles 

for ~, 7- E C, cf 7- = Ro with j~,N' (7-) > U{j~N(,~) [ 7 ~ C is an indiscernible for 

in N }  is bounded in ~. 

Proof: Suppose otherwise.  Define a chain (Ni I i < o;1) so tha t  
h N (1) N U{ 

(2) Ni = Uj< i  Nj  for l imit  i, 

(3) there are unboundedly  m a n y  in ~ indiscernibles 7- E C for Ni+l ,  cf 7- = Ro 

with  

Z,N,+, (7-) > U{zNj (7) E C is an indiscernible for tc in Nj}. 

Set N = Ui<~x N~. Find S C Wl for cardinal i ty  wl consist ing of successor 

ordinals  and no < o; such t h a t  for every i E S, for every n > no and  for every 

indiscernible 7 E Ni - rno for n ~g, (7) = B N (7), also there is m _> n and an 

indiscernible 7~  E [7-,,, r , , + l )  for +c in N~ sat isfying the condi t ion (3) above. 
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Suppose for simplicity, that for every m > no, 7~ is defined for wl i's in 

S. Otherwise just deal with intervals [rm, rm+l) for m's satisfying this. 

Set b m =  {7~ [i E S, 7~ is defined} and 7m = [.J bin. 

CLAIM: There is nl _> no so that for every m >_ nl, for every indiscernible 

6rn E C N[Tm, Tm+l) for ~ there is 7 6 bm with/3"N(7 ) )" /3N (~m). 

Proo~ Suppose otherwise. Then for every n _> no there are m~ _> n and 

indiscernible 6,~ E C t2 [Tm~,Tm~+l) such that /3g(cm~) > /3"N(7) for every 

7 E bm~. There exists i0 E S such that {~,,~ ] no < n < w} C_ Nio. But it implies 

/3N'O(Cm~) = /3N($m~) for every n > no. Let il be any element of S -  io. Then 
* N  il /3*Ni 1 il -1 (Tra~)  /3 Nil (~m~) /3 N'o (~m~) /3 N (Cm~) for every n /3 (Tm ) = > = = 

il s.t. 7m~ is defined and Nio, N i l N  agree about the function/3(.). Contradiction. 

| 

Let m > nl.  Since cf 7m = 021, there is a club em C_ 7m consisting of 

elements of C which are indiscernibles for ~ so that for every 7, T ~ E em and T H, 

T < T" < T', /3N(T) < /3N(T') and /3N(7-") < /3N(T'). Define now an increasing 

sequence (t~ [ n < w> of indiscernibles in C N 7m as follows. Set to = min era. 

Let t~+l = min{7 E em [ /3"N(7) > /3g(t~)}. Such t~+l exists by the claim. 

Then/3*N(Un< ~ t~) >_ U~<~/3N(t~), which is impossible by Lemma 2.8. 

Contradiction. | 

Set a (C)  = [_J{/3N(7) [ 7 E C is indiscernible for ~ in N}, where g is as in 

Lemma 2.16. 

Since IN[ < [~[ and cf t :(~)a* = t~ + a(C)  < a*. Also a(C)  < a**, if 

a(C)  _< a**. Pick a set A1 e $'(~, a*) so that A1 c_ A* and A1 ~ [.J{br(~, 7) ] 

a** <_ 7 <_ a(C)  if a** < a(C)  and 0 _< 7 _< a(C)  otherwise}. 

Let B1 be defined as B but only replace A* by A1. Pick a club C1 E V 

which points of cofinality w are in A1 tA B1. 

Let us now consider separately two cases: (1) a** = 0; (2) a** > 0. 

CASEI:  a** =O. L e t N b e a s i n L e m m a 2 . 1 6 .  P i c k N ~ D _ N s o t h a t A 1 , B 1 ,  C1 

E N ~. Since C M C1 is a club in V, there are unboundedly many indiscernibles 

T E CNC1 for ~ in N t of cofinality w. By the choice of A1, B1, C1, for sufficiently 

large r E C M C1, /3*(T) > a(C).  But by Lemma 2.17.1, it is possible only for 

a bounded in ~; number of ~-'s. So C n C1 is bounded in ~, which is impossible. 

Contradiction. 
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CASE 2: a** > 0. The arguments of Case I imply that  there are only boundedly 

many in ~ indiscernibles v in C N C1 for ~ in N '  with/3(T) _> a**. Consider now 

C N C1 instead of C. Then a(C N C1) < a**. Pick a set A2 E 5r(a, a*) so that  

A2 C_ A1 and A2 ~ [.J{F(a, 'y) I ' / - <  a ( C  u C1)}. Find B2 and C2 for A2 as B1 

and C1 for AI. Apply the argument of Case 1 to C N C1 and C2. It  will imply 

boundedness of C N C1 N C2, which again leads to the contradiction. 

So cf a* should be a~. 

This completes the proof of Theorem 2.5.1. | 

Note that ,  if the assumption ~N C_ N can be removed from the Mitchell 

covering lemma, then the conclusion of (e) of 2.5.1 can be improved to an (w, A+) - 

repeat point. 

It  is possible to replace tqo in 2.5.1 by any regular tt < tr so that  #+ < ~. 

Note that  by Jech-Magidor-Mitchel l -Prikry [J-M-M-P] precipitousness of NS~+ 

is equiconsistent with a one measurable. 

THEOREM 2.17.0: Suppose that N~ is precipitous for a regular uncountable # 

with #+ < ~, then the conclusion of 2.5.1 holds. 

Sketch of the proo~ The only difference in NS~ case appears when n = #++. 

It became impossible anymore to use submodels which are p-closed. For non #- 

closed submodels No, N1 (even if they are good), it is unclear, in general, whether 

starting at some #0 < a all the indiscernibles 6 E No N N1 for a above #0 are for 

the same measures in No and N1. Recall that  this property was used already in 

the definition of a*. Also some new problems arise further in Lemmas 2.9, 2.11, 

2.15 since ordinals of cofinality wl will never be a club. 

Let us first give the new definition of a*. Consider in V the set Z C_ 

consisting of ordinals 5 so that  

(1)  cf~f = wl and 

(2) cf It(y)/f = 6 

are contained in a good for 6 submodel N~ so that  there exists a sequence 

(~i [ i < ~v) E N~ ofindiscernibles for ~ so that  (~N;(6i) [ i < Wl) E N~ 

and for every indiscernible T >_ 6o for ~ in 5r~ there is i < o;1 so that  T < 61, 

3 B; (7) < 3 N; (6i), where ~3~* ( - )  stand for the measure over ~ itself. 
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LEMMA 2.17.1: The set Z is stationary. 

Proof: Suppose otherwise. Let C be a club disjoint from Z. Let a 

least so that some condition in (NS~)  forces that the measure $-(tr a)  

to move ~ in the generic ultrapower. Let M be a generic ultrapower 

by a generic elementary embedding using the measure ~-(~, c~). Apply 

be the 

is used 

defined 

Lemma 

2.1 to C inside M. Let (~'i I i < wl, i is a successor ordinal ) be as in Lemma 

2.1. Define Ti = Uj<i Tj for a limit i < Wl. Let N be a submodel so that  C, 

(ri [ i  < Wl) C N, Igl = R1 a n d ~ N  _C N. Suppose that g -< H x for ~(large 

enough so that  for every 5 C N of cofinality wl which was regular in/C(~-), N 

contains a counterexample N~ to the condition (2). Pick a submodel N* _D N of 

cardinality R1, closed under w-sequences so that N N Ti E N* for every i. For a 

successor i < wl denote [J (N M ri) by 5~. Then 5i E C and cfSi = Wl. Pick a 

club of indiscernibles of N* for 5i, (Si(j) [ j < Wl). Pick N** _D N* of cardinality 

R1, closed under w-sequences and so that h N• E N**, ((~i(j) [ J < wl) [ i < Wl, 

i is a successor ordinal} E g**, ((Z N• (Si(j)) [ j < Wl) I i < Wl, i is a successor 

ordinal} e Y**, where Z N* (5i ( - ) )  stands for measures over ~i. By [Mi4, Lemma 

1.6], for every limit i < wl there exists i' < i so that every indiscernible of N, #, 

for ~;, 7"/, < p < Ti is an indiscernible of N** for ~ for the same measure over Vi. 

Using the F6dor Lemma and the coherence function find i0 < wl so that for every 

limit i > i0 every indiscernible tt of N* for a, Tio < # < Ti is an indiscernible of 

N** for a for the same measure over vi. Once more using the coherence, this will 

imply that for every successor i large enough a final segment of (Si(j) [ j  < wl) 

will be indiscernibles for ~ in Y** and over 5,, Z N" (~i,(j)) = Z N** (Si(j)). Then 

N** is a model satisfying the conditions (1) and (2) for 5i. Contradiction. 1 

For ~ < ~ consider the set Z~ = {5 E Z I for every N~, ]N~ I = b~0, N~ _D N~ 

as in the definition of Z can be picked so that the parameter of N;  is below ~, 

i.e., N~ n H x C hN~ (~ U cN;  ) }. 

There exists ~0 < ~; such that Zeo is stationary. Otherwise just pick for 

every ~ < ~; a club C~ disjoint to Zr Set C = Ae<~C~. Use this C in the proof 

of Lemma 2.17.1 in order to obtain the contradiction. 

Further, we shall deal with indiscernibles above this ~0, without stating it 

specifically. 

Let us call further a submodel good for 5 if it has the properties of N~ in 

the definition of Z~.  The proof of Mitchell's Lemma 1.6 from [Mi4] implies that,  
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if No _C N1 are good for 6, then the final segment of indiscernibles of No for 6 

are indiscernibles of N1 for 6 for the same measures over 5. 

Define now a* as in the R0-case only replacing Y there on Z~o. Let us 

preserve the notations made there with obvious changes of w with wl. 

PROPOSITION 2.17.2: I f N S ~  is precipitous and 2 ~~ = R1 then there exists an 

R2-repeat point. 

Let us split the proof into few claims. 

CLAIM A: For every submodel N '  there exists N _D N t so that for every N "  D N,  

for every a < Wl, for every infinite s C_ w, for every sequence (#~ ] n E s> of  

indiscernibles of  N '  for T~+~ SO that Pin E (7~+n, T~+n+l), the following holds: 

f f  there is a sequence (#~ ] n E s> of  indiscernibles of  N "  for T~+~ so that 

' AN'( ' ~ for all but finitely many  n's in s, ~;~ c (~,~-o+~+1) and 9ff"(~'n') > ~ ,a~,  

then there is a sequence (#~ [ n E s I of  indiscernibles of  N for T~+~ SO that 

pn ~ (~" ~-~+,~+,) and 3 N ( ~ )  > ~ [p~J for a11 but finitely many n's in s, 

where 3~(P) denotes the measure for # over ~ .  

Proof'. Suppose otherwise. Let N'  witness this. Let (tim [ a < wl) be an 

enumeration of all possible sequences of indiscernibles of No. Define by induction 

an increasing continuous sequence (N~ [ (~ < Wl), so that  N , + I  takes care on fi~ 

when it is possible. Set N = ~J~<~,N~. There are N ' _ D  N, ~ < ~1, s C_ w a 

sequence (#" [ n E s) ofindiscernibles of N '  for v~+~ so that  #', E (T~+n, Ta+n+l),  
~ g "  .,,~ 3N,  , SO that  #~ > #~ and ~ (~n) > ~ (#n )  for all but finitely m a n y n ' s i n s  but 

there is no sequence (mun [ n < ~) of N satisfying this. Let 3 < wl be so that  

fiz = <mu" I n E s>. Then, by the definition of NZ+I, there exists a sequence 
N' t (#~ I n E s) of indiscernibles of NZ+l for 7~+~ so tha t /3  N~+~ (#~) > fl~ ( /~)  and 

#~ > #,~ for all but finitely many n 's  in s. But g ~ fl~+~ ' ~ (#n) = (#~) for all but 

finitely many n 's  in s. Contradiction. I 

CLAIM B: For every N ~ there exists N D_ N ~ so that ~N C_ N and for every 

N "  D_ N,  for every a < w, s C_ w and sequence (#~ [ n E s) of  indiscernibles of  

N for T~+~ SO that #" E (T~+,~, T~+n+l), the following holds: 

I f  there is a sequence (#~ [ n E s) of  indiscernibles of  N "  for 7"~+~ so that 

#~ E ( /z ' , r~+x) and ~N" (#,~) > ~ (#,0 for all but finitely many n s, then there j~N[ ! \ 

exists such a sequence already in N. 

Proof." Use Claim A wl-times. I 
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Let # E C be an indiscernible for To+,o(a < Wl) in some N. Denote by 

13"~ N the maximal ~ < [3N(#) such ft. Define ((fl.~)N [ n < w}, ((dan) N l n < 

r as in the No-case but use To+~ instead of ~. 

CLAIM C: For every N ~ there exists N D N t so that: 

(a) for every a < Wl ( ( ~ ) N  I n < w) exists, 

(b) for every Y "  D_ N' ,  for every a < w, i f  <03"~ N'' [ n < w> exists, then 

(/3"~) N'' < (/3"~) N for all but finitely many n's. 

Proof." Suppose otherwise. Let No witness this. Split a;1 into wl-disjoint sets 

<S{+l [ i < Wl> of cardinality wl. Define by induction an increasing continuous 

sequence (Ni[ i < Wl �9 wl>. 

Suppose (N~, I i' _< i) is defined. Define N~+I. Let N~ _D N~ be w-closed 

and so that (N~NTo [ a < Wl) E N~. Pick N[' D N~ to be as in Cla imB.  Let 

i = Wl" i0 + il, where il < Wl. Pick a < wl so that il E S~. If/(/3~*~ N:' [ n < w) 

are undefined and there exists N _D N[ ~ with ((/3"~) g [ n < w) defined, then let 

N~+I be some such N. If ((fl*~)g;' [ n < w) are undefined and there is no N 

as above, then let Ni+l = N~. If ((fl*~)N~' [ n < w) are defined and there is 

no g _D N~' with ((/3~) N I n < w) defined and so that (f l~)N > (fl*a)N~' for 

infinitely many n's, then let Ni+l be some such N. Otherwise, let Ni+l = N~ ~. 

It completes the definition of (Ni[ i < wl .Wl). Set N = U{Ni [ i < wl .wl}. Let 

a < wl. We like to show that (/3*~ exist. Let us first show the following: 

SUBCLAIM: For every ~ < Wl �9 wl of cofinality wl, for all but finitely many n's 

the following holds: 

For every indiscernible p such that ra+n+l > p >_ min(d~) g~ of N~ for T~+,~ 

there exists an indiscernible 6 E C, To+~+I > 6 > p of N~ for T~+~ of cofinality 

Wl so that ~g,  (6) > ~3 N' (p). 

Proof: Suppose otherwise. Let (Pn [ n �9 s) witness this. Deal for simplicity 

with ~ = w~. Find i �9 So so that {p,, I n �9 s} C_ N~. By the definition 

of Ni+l it contains N~'. Then for almost all n's in s, ~,, = U N~' n r~+,~+l 

is in C is of cofinality wl and it is a limit of indiscernibles ~ of N~ ~ satisfying 

~N~' (~) > ~3N~, (p,~). By [Mi4, aemma 1.6], then t3 N~' ( ~ )  > Z N~' (p~) for all but 

finitely many n's in s. Contradiction. | 

So, for all but finitely many n's, ~o([_J(N~ A ~_ +~))N~+~ exists. Denote 

U(N~ N To+n) by 6~'~. 
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The proof similar to those of the subclaim gives that for all but finitely 

many n's, the following holds: 

For every indiscernible p, T~+n+l > P >_ min(d~) N of N for 7-~+~ 

#~(6~'~) > 13N(p) for all but countably many ~'s ~ < wl "031 and cf~ = ~1. 

It implies that,  starting with some ~o, all 13 *~ (6,~'~) N's should be the same. 
_ ~ , ~  ~ ~ , ~  Since otherwise, just consider some N* D g LI {h N} U {(6, ,#~(6 n )> I n < 

w ,  ~ < Wl "~1} L) {((.iN N T~+~> In  < w} and apply the analog of Lemma 2.9 

to obtain the contradiction. So ,~ N ( # * )  exists for all but finitely many n's. 

Since the sequence (Ni I i < wl .Wl> is increasing and continuous the same is 

true for a club many Ni's and with (~3"~) g' ,~ N = ( fT, )  . Now, as in Lemma 2.10.2, 

we obtain a contradiction, since -,(b) was used a lot of times in the definition of 

(N~ l i < r I �9 ~31>. m 

Using Claim C, it is not hard to prove the following analog of Lemma 2.10.2. 

CLAIM D: There exists a sequence (~*'~ I n < w , a < 031> SO that for every N '  

�9 ~ = ( ~ *  ) holds fora l l  there is N as in Claim C, so that  for every a < wl,  t3" ,~ N 

but iinitaly m a n y  n 's. 

CLAIM E: For every 6 < R2, for every N ~ there exists N D_ N '  so that for every 

a < ~1, (13"~) N = /3 *~ and 6~ N >_ 13 *~ + 6 holds for all but  flnitely m a n y  n's, 

where 6~ N = sup {~ff(T) [ T E C n to+n+1 - m i n d ,  N}. 

The proof is similar to Lemma 2.11 and we leave it to the reader. 

The proof of the proposition follows now from Claim E as in the N0-case. 

Notice only, that all but countably many r~'s remain indiscernibles for n in any N. 

So A n T~+~ C ~-(T~+~, #*~ + 6) for W 1 Or'S, will imply that A E ~'(n, 13) for some 

=/3* + 6, where ~* is the maximal ordinal below 13 such that A* E 9r(n, 13"). 

The proof that cf a* = ~ generalizes straightforwardly to the Wl-case, just 

in Lemma 2.16, involves fl~(_)N, 13,~(_)g for every a < Wl and use Claim B in 

the construction of the sequence of models there. | 

THEOREM 2.18.0: Suppose that  NS~ ~ is precipitous and the empty condition 

forces "k > (2~) +''. Then there exists an up-repeat point. 

Let us assume now that NS~ ~ is precipitous and in generic extensions by 

NS~ ~ always n >_ (2'~) +. Then it is possible to strengthen Lemmas 2.1 and 2.2 

as follows. 



94 M. GITIK Isr. J. Math.  

LEMMA 2.18: There exists a sequence (r,~ [ n < w) such that for every club 

C e V a final segment of (-r, [ n < w) satisfies the conditions (i), (ii), (iv) of 

Lemmas 2.1 or 2.2. 

Proof." Suppose otherwise. Let (C~ [ v < (~+)v) be an enumeration of a 

generating family of clubs in V so that C~ - C~, is nonstationary for every 

v _> u'. In a generic extension V[G] of V by NS~ ~ construct an elementary chain 

(N,  1~' < ((2=)+)Y[~ so that 

(1) _D u }), 
(2) IYg < vial, 

(3) C 
(4) for every v > g there exists n(g ,  v) < w s.t. (i) for every n _> n (g ,  v) 

N ,  T~ N~ _< T~ N~' and (ii) for infinitely many n's r ,  Nv < T, ~ . 

Start with any No s.t. Co 6 No and satisfying (2), (3). By the assumption 

there exists vl and g '  s.t. C~ 1 6 N'  and (T~ N~ In  < w), (v~ N' I n  < w) satisfy 

(4). Pick r~ N' as large below T No as possible. 

Pick N1 to be some N s.t. N D_ No tAN' u {h N~ , h N' }, ~N  C_ N, IN[ _< 2 ~. 

Suppose that (N~ ] v < p) and a subsequence (Cr [ v < p) of (Ci [ i < (a+)v) 

are constructed, Ci. 6 N~. If P is a successor ordinal then define No as above. 

Assume that P is a limit ordinal. 

Since ~ changes its cofinality to w still remaining >_ ((2~)+) viol, the co- 

finality of (a+)v should be _> (2~) + in the generic extension. So the sequence 

(iv [ ~ < P) is bounded in (~+)v. Let io = min ((~+)v _ (-J~<o i~). Pick N~ to 

be any N satisfying (1)-(3) and containing Cir. Then Ci~ is almost contained 

in every Cr (v < p). So (4) is satisfied since ~ is a limit ordinal. It completes 

the construction of (N. [ v < (2~)+). Define now a partition f :  [2~+] 2 ~ w 

f ( g ,  u) = min{n [ T N"' > r N~ }. By Erdhs-Rado, there exists a homogeneous set 

of cardinality 2 ~ for f .  But it is impossible since there is no infinite decreasing 

sequences of ordinal. Contradiction. | 

We would like to show that  there exists an up-repeat point. Suppose 

otherwise. Pick a sequence (r,, [ n < w) as in Lemma 2.18. Let a* be as 

defined above. Let us deal with a* itself. 

LEMMA 2.18.1: For all but finitely many n's cfT, > R0. 

Proo~ Suppose otherwise. Fix some N with (T, [ n < w) 6 N. Suppose for 

simplicity that  each v,, has cofinality w. Then 03"(~-,)) g is defined for every n. 
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Now pick some D E ~-(~, a*) s.t. D ~ ~'(~, (/3*(rn))N). Replacing now A* by 

DNA*, we find a club C'  which avoids Tn'S. This means that (Tn ] n < w / can be 

replaced by a smaller sequence, which contradicts the choice (Tn I n < w}. I 

Remark 2.18.2: Using a similar argument it is possible to show that  (r,~ I n < w) 

should satisfy the condition (iii) of Lemma 2.1 or 2.2. 

Consider now a few cases. We preserve the notation used above. 

CASE 1: cf a* = ~+. Define a chain (N~ t v < wl) of submodels in M so that  

(i) N~ _D U~,<~(Nv, u {h N~' }), 

(ii) /3 *N~ ~t U{/3 *g~' [ v' < v} for all but finitely many n's. 

In order to insure (ii) notice that  there exists a set Av E $v(a, c~*) such that  

A~ C_ A* and A~ ~ U{~(a, /3 *g~') ] n < w, v' < v}. Replace A* by A~ and 

define N~ according to A~. 

Finally, set N = Uv<~l N~. Then for some no < w there exists an increas- 

ing sequence of indiscernibles {#m [m < w} C (T,~o, r~0+l ) with (~*N(#m) [m < 
w} also increasing. But it is no impossible by Lemma 2.9. 

C A S E  2: cf O~* = ~. Let (C~ [ v < ~++) be the coherent box sequence over ~; 

in/C(~),  i.e., E]~+-sequence such that [~+-sequences of ultrapowers by measures 

over ~ are initial segments of it. We refer to Schimmerling [Sc] for the fact of 

existence of such sequences. For v < ~++, 5 < ~+ let C~(5) be the 5'th element 

of C~ if there exists such an element. 

Pick, in K:(.~), sets (A(5) [ 5 < ~} such that  A(5) E .T(~, C~. (5)) and A(5) 
does not belong to any ~'(~, ~3) with/3 > C~. (5). It is possible since we assumed 

that there is no up-repeat points. 

We'll use the sequence (A(5) ] 5 < ~} instead of A*. 

Let N be a submodel. Suppose that  (#n ] n < w} is a sequence of indis- 

cernibles for ~ s.t. #n E (mindN,T~), where d N is as in Lemma 2.8. Let n < w. 

Set m(n) to be the least m so that  C~(Tm) ~ C[~.(~,~)(Tm). Pick a set A,~ E 

$-(~, C~.(Tm(~))) -- ~(~ ,  C~.(,,)(Tm(n)), An C_ A(Tm(n) ). Let A* E Y(~;,a*) be 

aset ofallS, Tm(n) < 5 <  ~s.t. A~nSe~ ' (5 ,  Co~.(, ) [] (T,n(,~))). Sincecf ~ + > w ,  

there exists a set A* E $'(~, a*) which is almost contained in every A* and does 

not belong to any .measure above a*. Define B(A*) in/C(~') to be the set of all 

< ~ such that  there exists largest 5* < 5 s.t. A* N 5 E $-(*, 6") and cf ~* = ~. 

Then A* O B(A*) belongs to all relevant measures and hence contains an w-club. 
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(0) 
(1) 

(3) 

(4) 

(0) 
(7) 
(s) 

Define now a chain (N~ ] # < wl) and sequences (#n~ [ n < w, ~, < wl), 

Y ( 0 3 1 )  , (C~, I/2 ( W l )  so that 

(A(6) I 6 < n) �9 No, 

u {hN  ' }, 
for n < w, if T, is an indiscernible for ~ in N~ then (#n~ I n < w) is a 

sequence of indiscernibles for ~ in N~ s.t. #,~ �9 (mindN",T,~) otherwise 

#~v = 0, 

A~ = (A*) N~ , i.e., defined as above using N~ and {#~  ] n < cv), 

Cv C_ Av u B(A~,) is a club in V, 

A~, C~ �9 N~+x, 

A~ is almost contained in Av, and Cv in C~, for v' < v, 

{d N"+' In  < w) is defined as in Lemma 2.8 using C~, 

~nv'-I-1 ~ ~nv'  for every n < w, v' _< v, 

N~+I satisfies conditions (a)-(e) from page 77 with C replaced by C~, A 

byA . 
Set N = U~<~x N~. Find S C_ Wl of cardinality Wl consisting of successor 

ordinals and no < w such that for every u E S, every n > no, the following 

conditions hold: 

(a) ~-~ is an indiscernible for n in Nv and in N, 

(b) pn~ is an indiscernible for n in N and/3N(p,~v) = /3N" (p,~), 

(C) the support of A~-I in N and N~ is below r~ o. 

Pick an increasing sequence Ul < u2 < . . .  < uk < . . .  of elements of S 

and some n > no such that mind N < P,~l < pn~ < " "  < #nv~ < "'" �9 Let 

us denote p , ~  simply by pk. ~N(#I)  < /3N(P2) < "'" < /~g(Pk) < "'" by the 

definition of d~. Set p = Uk<~ #k. Then without loss of generality ~N(p) < a*, 

since otherwise just replace n by some n' > n. Recall that  by the choice of a* 

it is impossible to have an unbounded in n sequence of indiscernibles p with 
> 

By the choice of #k (k < w) and (c), A ~ - I  E .T(~,j3*N-~(pk)). Let 

i < j < w. Since by (6) A~j_I is almost contained in A~, A~, E 9c(~, 3*N(pS)). 

But A~, = (A*)N"~. Hence (A*)N"~ is almost contained in A~,. So (A~) N~, �9 
~'(a,/3 *N (#/)) .  Then A N"` �9 ~'(a,  C~.N (~,D(~'m(~))). But A N"` ~ ~'(a,  C~.N(,,)) 

(~-m(~)). Hence C~.~(,~)(Vm(n)) _> ~N(#,),  since between C~.N(~,,)(Tm(,q) and 

/~N(#~) there is no measure to which A(rm(~)) belongs. Pick the least fi < ~v s.t. 

C~.N(~)(va) < C~.(7-~). Then for every k < w (~'m(,0) N~ < r~, so for every i < 
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j < w, ~N(#~) < C~.~( , j ) (~) .  But then Ui<~ ~N(#~) is bounded below ~ .g (#) ,  

since otherwise A(~-~) would belong to unboundedly many in t3" N(#) measures, 

which contradicts the choice of A(T~). This is impossible by (9). Contradiction. 

CASE 3: cf  O~* < ~ o r  oc* is a successor ordinal. Similar to Cases 2 and 3. 

This completes the proof of 2.18.0. | 

Lemma 2.18 can be used to show the following 

THEOREM 2.19: Suppose that NS~ is ~+-saturated for ~ >_ (2~) +. Then 3~ 

0(~)  = ~++ in an inner model. 

Proof: Suppose that  -~B~ O(~) = ~++. By Shelah [S], ~ is weakly inaccessi- 

ble. So ~ > (2~) +. Then the empty condition forces "~ _> (2~) +''. Hence the 

condition Lemma 2.18 is satisfied if ~ changes its cofinality to w in a generic 

ultrapower. 

CLAIM 2.19.1: ~ changes cofinality to ~ in a generic ultrapower using the least 

relevant measure. 

Proof: Suppose otherwise. Let M be a generic ultrapower using the least rele- 

vant measure. ~+-saturatedness implies that the total number of relevant mea- 

sures is _< ~. 

Pick a sequence (A~ [ v < ~) of disjoint sets s.t. A~ belongs to v ' th relevant 

measure and minA~ > v. Then A = U~<~ A~ contains a club and at least one of 

the A~'s remains stationary in M. Let A~ o be a stationary in M. But then v0-th 

relevant measure can be defined in M as the filter dual to NS~ IA~o = {B C_ ~ [ 

B n A~ o is nonstationary}, which is impossible. Contradiction. | 

Let M be a generic ultrapower using the least relevant measure. By the 

claim and Lemma 2.18 find the sequence (Tn [ n < w). Let N be a submodel 

of H~+ (in M) with (Tn I n < w) E N. By removing an initial segment of T,~'s 

assume that all r~'s are indiscernibles for ~N. Assume also simplification of the 

notions, that  ~g = ~. 

Consider the set {~3N(~-,~) [ n < w}. By ~+-c.c., find a set A in /E(~)  of 

cardinality _< ~ containing {~3N(~-n) I n < w}. Pick A such that U A _< the least 

relevant ordinal. Find a set B in the intersection of all relevant measures which 

does not belong to U{~'(~, a) [ a E A}. Then B contains a club C in V. Pick 

now N1 _D N U {h N } U{B, C}. The final setment of (T,~ I n < w) does not belong 

to B and so also to C. But C is a club. Hence there is no < w such that  for every 



98 M. GITIK Isr. J. Math. 

n > no, C is bounded in rn. But it contradicts Lemma 2.18. Contradiction. 
| 

3. Constructions of  precipitous ideals 

Denote by NS Sing the ideal NS~ ]{a < ~ ] (~ is singular and (cf a)  + < ~}. Our 

aim will be to prove the following. 

THEOREM 3.1: 

(1) Suppose that there exists an (w, tr + + 1)-repeat point at ~ in K:(.~). Then in 

a cardinal preserving generic extension ' ~ C H  + NS~ is precipitous" holds. 

(2) Suppose that there exists an (w, a+)-repeat point at ~ in K~(~). Then in a 

cardinal preserving generic extension GCH + NS Sing is precipitous holds. 

THEOREM 3.2: 

(1) Suppose that for a regular cardinal A < a there exists an (~, A + 1)-repeat 

point in IE( ~'). Then in a generic extension, preserving all the cardinals 

<_ A, "~ = A +, NS~ is precipitous and GCH" holds. 

(2) Suppose that for some regular A < ~ there exists an (o~, A)-repeat point at 

in IE( ~-). Then in a generic extension, preserving all the cardinals <_ A, 
"~ ---- )~+, NS Sing is precipitous and GCH" hold. 

Suppose first that  a is an (o;, g+ + 1)-repeat point at n in/C(.~) = V. Force 

first with the forcing P~ defined in [G2-3]. This forcing adds Prikry, Magidor or 

Radin sequences to every 6 < g with Of(6) > 0 and it satisfies g-c.c. Let Q~ be 

the Backward-Easton iteration over V ~'~ which adds 6 + Cohen subsets to every 

regular/f < r with Of(6) > 0. Fix a generic subset G~*H~ of 7~*Q~. The filter 

F = N{Jr(n,/3) I a < ]3 _< a + ~+} is still precipitous in V[G~ * H~] since, by 

Magidor [Mal], g-c.c, extensions preserve precipitousness. We shall shoot clubs 

through every set in F,  then through the sets of generic points and so on. 

In order to preserve precipitousness we shall show that  each elementary 

embedding by ~'(n,/3) can be extended at each stage. 

The situation here is similar to those of [G1-2]. Let us concentrate only on 

the additional arguments needed in order to apply the forcing of [G1]. 

Let ja: V ---+ N~ ~ V~/~r(tc,/3) be the canonical elementary embedding, 

where/3 < Of (n ) .  
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LEMMA 3.3: Let/3 < O~(~) and P(~,/3) is the forcing used over ~ in j~('P~). 

Then I~-p~xp(~,~) "{(qi [ i < cf ~) I for every j < cf ~ (qi I i < j)  �9 g,~ } is 

h/P,, *P(~,I3) ,, a ..~ -generic subset of Q~ , where H~ stands for the canonical generic 

subset of Q,~ over V p~ . 

ProoF'. If the forcing P(~,/3) preserves regularity of ~ then the lemma is trivial. 

Suppose that I ~-p(~,~) "cf a < ~" and that  the statement of the lemma is false. 

Let (q, p) �9 Q~ x p(g,/3) forces the negation. Pick a generic subset G of 

P(g,  B) with p �9 G. Find also a generic subset H of Q~, for Q~, as it is defined 

in V[G~,G]. Let q �9 H. Consider the set [-I = {s[i I s �9 H, i < ~}. Clearly 

q �9 /~. It is sufficient to show that /~ is a generic subset of Q~ in the sense 

of V[G~]. Let S be a maximal antichain of Qy[c~]. Since ~ is a measurable in 

V[G~], for some regular i < a, S C Qi. Hence S n H r O. Then also S N H r 0 

since S M H C S M/~. | 

Let E �9 N{J:(~,/3) I </3 < Define, in V[G~, H~], PIE] to be the 

forcing notion consisting of all d c_ E, Idl < ~ and d is closed. For dl, d2 �9 P[E] 

set dl _< d2 (d~. is stronger) if d2 is an end extension of dl. 

a is a ~+ + 1-repeat point, hence there is/3 < a s.t./3 + a+ + g+ < a and 

E �9 I/3 -</3' -</3+ Then the set E(a  +) = {6 �9 E I there is 

/~ s.t. O3e(/~) = ~ + a+ and 6 M E �9 n {~'($,$') I ~ -< 6' < ~ + a+}} belongs to 
~-(~,/3 + ~+). 

LEMMA 3.4: For every 6 E E(~ +) there exists a V[G~, H$]-generic subset of 

P[E n 6] inside V[G~+I, H~+I]. 

Proof The forcing 7a~+l/P~ shoots a Radin club through E M 6 without adding 

new bounded subsets of 6 (see [G2-3]). Hence EM6 contains a club in V[G~+I, H~] 

and the forcing P[E n 6] is the same over V[G~, H~] and V[G~+I, H~]. But then 

PIE n 6] is isomorphic to the forcing for adding a Cohen subset of 6. So there 

exists even a V[G~+I, H~] generic subset of P[E n 6] inside V[G~+I, H~+I]. | 

Let G~+I • H~+I be a N~-generic subset of P~+I x Q~+I, for some/3, 

a < /3  < a + ~+ + 1. In view of Lemma 3.3, let us not distinguish between H~ 

and H~+I]~. 

LEMMA 3.5: There exists a V[G,,,H~]-generic subset of P[E] inside 

N~[C~+I, H~+l]. 
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Proof." The proof is by induction on 3- Let us consider only the first step 

3 = a + 1. The rest is as in Lemma 4.1 of [G2]. 

Note that cf n = w in N~+I[G~+1,H~]. Let (Tn [ n < w) be increasing 

and unbounded in a s.t. E(n  +) E ~-(n, 7n). It exists since a is an (w, n+ + 1)- 

repeat point. Pick an increasing unbounded in n subsequence (6n [ n < w> of 

the generic sequence such that 6n corresponds to the measure ~-(n, ~'n). Without 

loss of generality assume that  all 6,,'s are in E(n+).  Using Lemma 3.4 construct 

a sequence of closed sets (C, [ n < oJ / so that 

(1) C~ E V[G~+I, H~.+I] is a V[G~ n, H~.]-generic club through E n 5~, 

(2) C~+1 is an endextension of Cn U {/bn}. 

Set C = U~<~ c , .  Let us show that C is a N~[G~, H~]-generic club through 

E. Let D E V[G~, H~] be a dense open subset of P[E]. The set of ~'s such that 

D O P[E O ~] e V[Gr H~] and D O PIE O ~] is a dense subset of P[E O ~] contains 

a final segment of 5~'s. But then C is an endextension of an element of D. I 

Let E1 be another set in n { F ( n ,  7) ] a <_ 7 < a + n+}. Suppose that  

E1C_E. 

LEMMA 3.6: Suppose that C E N~[G,~+I,H~+I] is a V[G,,H~]-generic club 

through E defined as in Lemma 3.5. Then there exists C1 c N~[G~+I, H~+I] a 

V[G~, H~, C]-generic club through El. 

Proof'. Let (7n I n < w), (6n I n < w) be the sequences used in the definition of 

C in Lemma 3.5. 

For every n < w there is 7 < 7~ such that E l (n  +) E ~'(~,7).  Then the 

set /~ = {~ < ~ I for some 3' < O~e(~) EI(~ + ) N 6  E .~(6,7)} belongs to 

Nn<  
So the final segment of (6~ I n < w> is contained in /~. Suppose for 

simplicity that every ~,~ is in E. 

CLAIM: There exists a subsequence ( ~  ! n < w) of a generic sequence to ,~ such 

that 
(:) = 

(2) < 
(3) C n $~ is a V[G~,, H~j-generic club through E n 6~, 
(4) in V[G~+~, H~+~] there is a V [ G ~ , H ~ , C  n ~]-generic club through 

E, n 
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Proof'. Let C be a Q~-name of C over N~[G~+I]. Let {qn I n < w) be a condition 

in Q~ such tea t  q,~ E Q6n+l. Denote by p,~ the part of qn in Q~n+l - Q ~ .  Thus 

pn E V[G~+I ,  Q~]  is a function from a subset of 6~ of a cardinality less than 6n 

to {0, 1}. Actually only pn's are used in the definition of C in Lemma 3.5. 

Since 6n E /~, El(tO +) M 6n E 9r(6~,3 ,) for some 3 ~ < O~(6n). Then there 

is an element 61 of the generic sequence of 6~ such that sup(p,~) < 61 < 6,~ 

and 61 E EI(~+).  As in Lemma 3.5, then there exist Cn and C I so that Cn is 

a V[G~,g~]-generic club through E N 61 and C I is a Y[G~,H~,cn]-generic 
club through E1 Cl 6 I .  Extend now p,~ to p" which forces " ~  C_ C" .  Let q~ be 

the condition obtained by replacement of all p~'s by ' ' q' Pn s. Then forces the 

statement of the claim. Since q was arbitrary, the empty condition forces the 

same. I 

Let (61 ] n < ~o) be as in the claim. Let C I be a V[G,~,H,~i, CM61 ] 
generic club through E1 n 61, for every n < w. Assume also that 1 C~+ 1 is an end 

extension of C I .  Set C1 = U CI. Let us check that C1 is a V[G~, H,~, C]-generic 

club through El.  

Suppose that D E V[G,~, H~] is a P[E]-name of a dense subset of P[E1]. 

The set of~'s  such that D MR[El A~] E V[G~, H~] and D NP[E1M~] is forced by 

the empty condition to be a dense subset of PIE1 M ~] containing a final segment 

of 61's. But C N 61 is generic. So D N P[E1 M 61] is dense in V[G6~, H6~, C M 61]. 
Then C1 is an end extension of an element of D. I 

The rest of the construction is as in [G2]. 

In order to obtain a model with NSSi~g-precipitous for inaccessible ~, use 

the construction above. Only (w, n+)-repeat point is needed here since there is 

no need to care about regular limit points of the clubs. 

Let now A be a regular cardinal below n. First use the forcing P~. Then 

collapse tr to A + by the Levy collapse. Now it is possible to force generic clubs. 

The Levy collapse is used to pick such clubs replacing the forcing Q~ used above. 

4. Presaturatedness  of  NS~ 

In this section we will give a rather sketchy construction of a model of ZFC+GCH 
with NS~ presaturated for an inaccessible ~. Only new points which do not 

appear in the constructions of precipitous ideals will be emphasized. For the rest 

we refer to [J-M-M-P] and [G2]. Recall that an ideal over ~ is presaturated if it 
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is precipitous and the forcing with it preserves all the cardinals except perhaps 

itself. 

Suppose that c~* is the least up-repeat point at a in IC(~) = V. Let (~ be the 

least ordinal _< O~(~r such that for every A E ~-(~, ~*) there is ~, ~* < ~ < (~ 

and A E -~(a, B). Suppose for simplicity that 5 = O~(g).  

4.1 THE PREPARATION FORCING. Define first the iteration P~ for (~ in the 

closure of (~  _< g J ~ is an inaccessible or ~ = "~ + 1 and ~, is an inaccessible}. 

On the limit stages take the limit defined in [G2]. Suppose that c~ is an 

inaccessible and T'~ is defined. Define P~+I. Let C(~ +) be the forcing for adding 

~+-Cohen subsets to (~, i.e., {f  E V p~ I f is a partial function from c~ + x (~ into 

c~, JfI v~'~ < c~}. 7)~+1 will be "P~ �9 C((~ +) * 7~(~, O~e((~)), where "P((~, O~((~)) is 

a forcing for changing cofinality which is slightly different from those of [G2,3] 

used in section 3. We refer to [G2,3] for the detailed inductive definition and the 

properties. Let us just describe the changes we need to make here. 

Define U(c~, % t) which will be the ultrafilter extending ~'(~, "y) for ? < 

O~(c~) and coherent sequence t. Let j~: Y ~ N~ ~- Y'~/.T'(c~, j3) for j3 < O~e(~). 

Pick some well ordering W of V~ for a big enough A so that for every inaccessible 

< A, W{ V~: V~ ~ ~. Let "7 be some fixed ordinal below Of((~). Drop for a 

while the indexes a, ~/in "~ 3~, Y~. 

Let (A~, I ~" < ~+) be the j~(W)-least  enumeration of all canonical 7~o �9 

C(c~+)-names of subsets of a. 

Over N i(~'~ define an increasing sequence (y ~, J ~/~ < c~ +) of conditions in 

j(C(c~+)) deciding the statement "~ e j(A.~,)" (f~ _< (~, ~/' < a+).  Let us pick 

in the definition always j~(W)-least  extension. Let us now make changes in the 

sequence (y.~, 1"7 ' < (~+). 

Define a sequence (p~, J "~ < a + / o f  elements of Pj(~,)/7~,~+: so that 

(1) for a limit ~,' < a+ JJ pu, is the j(W)-least  Easton extension of (P~,, ] "7" < 

Y>ll"o+, = 1, 
(2) for every "/' < a+ l{ P~'+:  is the j(W)-least  Easton extension of P~, decid- 

ing "y~,~ II-6 e j (A~,)"  JIB~ = 1. 

For a subset A of (~ set A E U(a,  % t) if for some r in the generic subset of 

P~ �9 C(a+) ,  some ~' < ~+, a name A of A and a 7~ * C(~ +) name T ,  in N 

r U {( i ,T)}  Up.~, U y.y,I t- (~, &) E j ( A ) .  
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Let us consider now the ultrafilter U(a, 3', t) x U(a, 6, r for some t and/f.  

Let 

i: V , M ~ V~2/~(a,3") x Y:(a,6) . 

Then A E U(a,3",t) x U(a, 6,r  {~] {P I (~,P) E A} E U(a,6,r  E U(a,3",t) 
iff {~ ] for some r in the generic subset of 79o * C(a+), some 3" < a +, a name 

A of A and a T'o * C(a +) name T ,  in N~', r U {(r T )} U p~, U y~, ]~-((~, ci)) E 

j~'(A)} E ld(a, 3",t). 

Fix some name A of A. For each ~ < a pick a maximal antichain {r~ ] p E 

14} of elements of T'o * C(a +) so that each r~ decides in N~ the statement "for 

some 3'~ < a +, some T (r T)Up.y~ uy  l, e j~(A)" .  Since 7~o.C(a +) 

satisfies a+-c.c., 3'~'s can be fixed. Denote U{3'~ [ ~ < a} by 3'(a). Then, 

A E U(a, 3", t) x U(a, 6, r iff there exist rl in the generic subset of Po * C(a+), 
3'1 < a+ and a / )~  * C(a +) name T 1 so that in N, rl  U { (t, T 1) } U p~ U y~ [~--- 

(for some p E j(Io) s.t. rg is in the generic subset of Pj(o) * C(J(a+)) rg forces 

in M "for some T ,  ( r  U Yj(~(o))I~---(&'J(&)) E j (A)" ) .  

Note that it is possible to replace 3'(a) by 3'1. 

Consider now U(a, % t) x V(a, 3', r Let k: Y[Go, go] --~ g*[Gk(o), Ha(o)] 

be the corresponding elementary embedding, where Go * Ho is a generic subset 

of Po * C(a+). Let us change one value of the function Hk(o)(0) so that  it will 

take a to [id2], where id2(r, v) = v .  Fix some h: a + ~ % h E V. For ~f < 3' let 

7r~ be a projection of U(a, % r onto U(a, 6, r For every 6 < ~+ change one 

value of Hk(o)(k(5)) so that  it will take a to [r o id2]. 
Denote by /~k(o) the changed Hk(o). By the arguments of Woodin see 

[Sh-W], /~k(o) is still generic. Let k: V[Go, Ho] --~ N*[Gk(~),/~k(~)] be the 

appropriate elementary embedding. Define an ultrafilter U(a,  % t) as follows: 

A E / . ? ( a , % t )  iff a E k ( A ) .  

Use (D'(a, % t) l 3' < OS-(a), t a coherent sequence) in the forcing 79(a, OY(a)) 
instead of just (U(a, % t) I 3" < OY(a), t a coherent sequence) used in [G2]. 

Set 90o+1 = Po * C(a +) * P(a, O~(a)). 
It completes the inductive definition of the iteration Po (a _< ~). 

Over V p-*v.(~+) force with the forcing Q~ defined in section 3. Let 

e~ . H ~  , F ~  be a generic subset ofP~ .C(g+).Q~. The model V[G,~ *H,~ *F~] 

is the desired preparation model. 
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4.2. THE MAIN FORCING. As in section 3 we would like to shoot a lot of clubs 

in order to make NS~ presaturated. But now we need to destroy much more 

stationary sets. Analyzing the forcing with NS~ of section 3 it is not hard to see 

that  n, n + are collapsed to w. One of the reasons (there are many others) is that  

the forcing for shooting a club in the ultrapower N for j(tr actually shoots a club 

into a nonstationary set. Since cf (j(~)) = n + (in K(~) )  and we are shooting 

clubs into sets A consisting of regular in K:(~) cardinals, so j(A) consists of 

ordinals of cofinality n +. But {~ < j(~) I cf j3 = ~+} is nonstationary in V. 

In order to eliminate this situation let us insure from the beginning that  

j(n) (for a generic j )  will be a limit of indiscernibles which are almost contained 

in every j(A) whenever a club should be shot through A. 

By [G5], (U(n, 7, r I 7 < O(n)) forms a Rudin-Kiesler increasing sequence 

in V[G~ * H~]. Let us pick (U(~,7,r  I "~ < a*) and form a direct limit of the 

ultrapowers, where a* is an up-repeat point. It is well founded and closed under 

n-sequences since cf a* = tr +. Using the method of [G5] we'll turn this direct 

limit into usual ultrapower. But first let us define filters (W(n, ~) I ~ < O(n)). 
Set A e W(~,j3) iff there exist r E G~ * H~ * F~ and 7 < n + so that in N~, 

r u up.  u iF �9 

It is easy to see that every W(~,/3) is precipitous and the forcing with it is 

isomorphic to P(~,  j3) followed by Qj(~)/Q~. 
Fix some f~ > a*. Consider the filters W(n, ~) x U(~, 7, r for ~/_< ~. 

They still form a Rudin-Kiesler increasing sequence. We are interested in 

W(~, ~)x the direct limit of (U(~, 7, 8) [ 7 < a*)), since j (g) in the ultrapower 

will be a limit of indiscernibles. Let us use the generic functions H~ in order to 

turn W(~, f~)x direct limit of (U(n, 7, r [7 < a*) into a normal filter. 

Denote by i~: N~ --* M~ .~ (N~)J;(~)/j~(14(g,%0). Then, as in 4.1, 

A E W(tr x U(~,7,r  if there are rl  E G~ * H~ * F~ and 71 < ~+ so that  

in N~, rl  U lp(~,~) U ps~ U ys~ It- for some p e j~(I~) s.t. r~ is in the generic 

subset of Pj~(~) * C(j~(n+)) rs forces in M~ "for some T ( r  U pj(s~) U 

II e 

Let us change values as in 4.1 but only for the functions with indexes in 

h-1"(7) (where h: a + , ) 7). It  is equivalent to change of y./ 's.  Namely, 

if h(~f) < ~/ and i~($) E dora yj(~,) (7' < ~+), then change y~(~,)(i~(~f)) to 

i~(~r~h(~) o id2)(~,j~(tr = i.r(Tr.rh(~))(j~(t~)). Let us denote the changed y~, by 

the same letter. 



Vol. 92, 1995 RESULTS ON THE NONSTATIONARY IDEAL 105 

We are not interested in all the information yj(~,)'s give; the important part 

is Yj(-y')I h-l"( '~) �9 

Define the set W*(a,~) as follows: 

A �9 W*(a, f~) if for some ~ < c~* there are rl �9 G~ * H~ �9 F~ and ~/1 < ~+ 

so that  in Nf~, rl  U lp(,~,Z) U p~: U y.y~ Ik "for some p �9 j~(I~) s.t. r~ is in the 

generic subset of Pj~ (~)* C (j~(a+)) r~ forces in M~ "for some T (r T)Upj(~  )u 

II . 

LEMMA 4.1: W*(tr ~) is a filter in V[G~ * H~ * F~]. 

Proos The following is sufficient. 

CLAIM: Let A C_ ~. I[for some "~ < a* there are r~ �9 G,~ * H~ * F~ and "~1 < a+ 

so that in Nff, rl U lp(~,~) U p~l U y~l Ik "for some p �9 j~(I~) s.t. r~ is in the 

generic subset PJ2(~) * C(J~(a+)) ' r~ forces in M~ "for some T 

I I - -  1 (O, T) u u YJ;( l)lh II �9 i (A) 

then for every 6, ~, < 6 < ~* the same statement holds with ~/replaced by 6. 

Proof: Consider the set B = {(v,U) �9 In] 2 I for some r �9 (G~*H~*F~)I ~?, some 

T s.t. r I[ "(r T)  �9 7)(~, O(U)" and p~l ,y~ defined using the well ordering 

unt i l thestep~/1,  r U { ( C , T } } U p ~  uy~:lh"-l(~/)l[ ~ ' C A } .  

Extend W*(a, ~) to a-complete ultrafilters W1,W2 in a reasonable fashion 

fixing respectively ~, and 6. Then B �9 W1. Using W1 _<RK W2, the image of B 

in the ultrapower with W2 will have the same description as in the ultrapower 

with W 1. Hence B �9 W2. Now use the definitions of B and W2. I 

LEMMA 4.2: W*(~, ~) is a normal filter. 

The proof is routine. 

It is not hard to see that  the forcing with W*(n, ~) is isomorphic to 7)(~r ~)* 

(a part of C( j (a+))*  (Qj(~)/Q~)), where j (a)  is the same as the image of a under 

U(a,/3, r followed by the direct limit of (U(a, ~, r I 7 �9 a*>.  Since the forcing 

above preserves all the cardinals, W* (to, f~) is presaturated. 

Now we have to shoot clubs through sets in W(a, ~) for a lot of ~'s and 

iterate this process. Why is it possible without collapsing cardinals? 

Consider for a moment ultrapower with U(~, ~, r x U(~, a*, r The forcing 

which is used over j(~) there is based on the image of (U(~, 7, t) I "Y < a*). 
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The candidates for shooting clubs will always be in an intersection of a closed 

unbounded part of U(n, % r or their extensions. So this forcing will actually 

be closed from outside. 

LEMMA 4.3: a* is an up-repeat point  for <U(n, 7, r 17 < O(~)). 

Proos Let A �9 U(~, a*, r Find some r �9 G~ * H~, "y' < ~+, T ,  A so that in 

N ~ . , r [ . J { ( r  "s �9 J~ (A)". 

Consider the set B = {a < ~ I rl a tO (r  "& �9 A"},  where r I a, 

T I a are the natural restrictions to a and p~, ~ , y~,~ are defined over a in the same 

~ashion as p~,, yy, were defined over ~. 

Clearly, B �9 ~'(n, a*). So for some /~, a* < /3 < O(n), B �9 br(~,/3). 

But then in N~, r[.J{{r u p~, to y~, ]}--- "k �9 j~(A)" .  It means that  

A �9 V(~,/3, r | 

Notice that  (U(a, % r [ "y < O(~)) is not a coherent sequence. So the next 

lemma does not follow directly from section 1. 

LEMMA 4.4: I r A  �9 N~.<Z<o(~)U(a,/3,r then for some r < a* 

A C f l  U(tr /3, r 
r<~_<c," 

Prook  Suppose otherwise. Consider the set B = {a < ~ [ for every 6 < ~ some 

member of the generic sequence to a above 6 is not in A}. 

Then B E U(n, a*, r By Lemma 4.3, B �9 U(~, ~3, r for some/3 > a*. 

But then A ~ U(~, fl', r for unboundedly many/3'  </3, since (U(x, % r I 7 < 

O(~;)} forms a Rudin-Kiesler increasing sequence with projections on the generic 

sequences. See [G5] for more details. | 

Now for which /3's will W*(~,/3) be used? It is impossible just to use 

N{W*( ~,/3) I a* <-/3} since we need for precipitousness a separating family, i.e., 

a set (A~ I /3 _> a*} s.t. A~ �9 W(~,/3) and does not belong to the rest of the 

filters. But already the sequence (~'(~,/3) I/3 _> a*) contains weak repeat points. 

Let us remove all redundant/3's. 

Let (A~ I u < ~+) be an enumeration of a generating family of ~'(~, a*) so 

that  IA~+I -A~[  < n. Define by induction sequences (r~ It, < ~+), (/3~ [u < ~+), 

a* < /3~ < O(~). Let /31 be the least ordinal above a* so that A0 �9 F(~,/3). 

Set To = 0. Let T1 be the least successor ordinal u so that A~ ~ 9r(a,/31). If 
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t, = # + 1, then let ~ be the least ordinal ~ above ~ ,  so that  A~, E ~-(~, ~). 

Let v~ be the least successor ordinal 7 s.t. A~ ~t .~(g,/~,). 

For a limit v, pick ~ to be the least ordinal ~ > U~,<~/~-' so that 

AU~,< ~ ~, E ~-(~, ~). Define r~ as on the successor stage. 

Let B = { ~  ] v < g+}. Then for every A E ~ ( a , a * )  there is ~ E B s o  

that A E ~'(~,/~). Also (~ - A~ I u < n +) is a separating family for (gv(~, ~ )  I 

v ~ ~+). 

We would like to add to B more ordinals, preserving the separation prop- 

erty, namely for every fl E B a closed unbounded subsequence of O~+ sequence 

to ft. Let (C~ I a < tr ++) be the D~+-box sequence. By Section 1, cf ~* = a +. 

So every A E .T(n, a*) belongs to unboundedly many measures in 5, for a closed 

unbounded set of 5's in C~.. Let us assume that (A~ I u < g+) was picked so 

that for every u < n+, {~ < tr [ A.  M fl belongs to unboundedly many in 6 

measures for a club of 6's in Co~f(t~)}_ _D A~+I. 

Now add to B for every u < n+ a club of/~'s in C ~  s.t. 

(1) fl > max(U~,<~ ~ , ,  a*), 

(2) there exists a maximal ~ < fl so that AU~,< ~ ~, belongs to .T(~, 7). 

Denote the set obtained so by B*. By the construction, the family (~'(~, -~) ] 

")' E B*) can be separated. 

Applying arguments of section 1, it is not hard to see that if A E ~{~-(~, "y) I 

")' E B*}, then there is a club C C C~. so that A E ~ { F ( ~ ,  7) I "~ = a* or ~, E C}. 

Let us use the filters ~{.T(a,  13) t fl E B*} and N{W*(a ,~ )  t/3 E B*} as a 

basic one for shooting clubs. The forcing applied here is analogous to those used 

in section 3 and in [G2]. One new problem appears in the present context: which 

projection of the forcings :P(a, f~), Q~+I/Q,~ onto the forcings for shooting clubs 

to pick. It was not important for constructing precipitous ideals, since cardinals 

there may collapse. And this actually happens if the projection is picked in a 

generic way as in section 3 or [J-M-M-P] or [G2]. The simplest thing to do is 

just to fix some projection from the beginning. The problem is that  this adds 

new stationary sets into the filters and it is unclear how to turn them into clubs 

without collapsing cardinals. So let us do something in the middle. We will turn 

the forcing for choosing the projection into an atomic one. 

Denote by B~ all the elements 13 E B* so that  otpC~ = a, for every 

a _< ~+. Let (R~ I a < ~+) denote the iterated forcing for shooting clubs over 

V[G,r * H,r * F,r Let a < a+ and ~ E Ba. We project :P(a, 13) onto R~ free. But 
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for "r > a fix some canonical projection of P(a, /3) /R~ onto R~. Note that on 

each stage ~/of the iteration (R e I ~ < a+) only projections for/3's in B* with 

otpC~ < ~/are fixed. But such elements appear only on an initial segment of the 

Radin clubs. So it still leaves enough freedom for shooting clubs. 

5.  W h a t  c a n  h a p p e n  o v e r  a m e a s u r a b l e ?  

Let us start  from saturation. By Namba [N], NS~ or even NS~ Reg = NSI (regular 

cardinals) cannot be saturated over a measurable n. Consider the following 

weaker notion. 

Definition 5.1: An ideal I is densely saturated if for every/-posi t ive set A there 

exists an / -pos i t ive  set B C_ A so that I I B  is saturated. 

Clearly, saturation implies dense saturation and dense saturation implies 

presaturation. 

We do not know whether full nonstationary ideal or NS sing can be densely 

saturated. But NS~ eg can be even saturated; Jech and Woodin [J-W] have shown 

the consistency of "NS~ eg saturated" follows from that of a measurable cardinal. 

, Reg THEOREM 5.1: ~WS~ is densely saturated over a measurable ~" is equiconsis- 

tent with a weak repeat point. 

Proof: If NS Reg is densely saturated over a measurable ~, then it is precipitous. 

But by [G6] it implies a weak repeat point over ~. 

On the other hand, if there exists a weak repeat point over ~ in/C(.~), then 

use the construction of Jech-Woodin [J-W], only each stage a _< ~ of interaction 

shoot clubs into sets in N { f ( a , / 3 )  [/3 < O(a)} and the filters generated by this 

filter. | 

Turn now to presaturation and precipitousness. 

Definition 5.2: Let us say that /3  < O f ( n )  is a weak repeat point above a if for 

every A 6 F(a, /3)  there is ~/, a <_ "y </3 so that A E ~-(g, "~). 

THEOREM 5.3: Suppose that there is no inner model of 3~0(~) = ~++. Then 

the following holds. 

1. It'NS~ is precipitous (or presaturated) over a measurable ~ for some A < 

then, in IC(~), there exists a measure concentrating over (w, < ~)-repeat 

points (or up-repeat points respectively). 
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2. I f  NS,r is precipitous (or presaturated) over a measurable ,~ then, in IC( ~-), 

there exists an (w, < ,~)-repeat point (or an up-repeat point) with a weak 

repeat point above it. 

Proo~ For (1) just note that NS~ will be still precipitous or presaturated in the 

ultrapower. Let us prove (2). Let j:  V --+ M be the ultrapower of V by a normal 

ultrafilter over ~. By [Mil], J l /C(~)  is an iterated ultrapower. Let ~'(~, j3) be a 

measure used to move ,~. So j (~ ) [  (,~ + 1) = ~[ ft. By section 2, there exists an 

a < 13 which is an (w, < ~)-repeat point if NS~ is precipitous or up-repeat point 

if NS~ is presaturated. If there exists a set A E ~'(a, 13) which does not belong 

to any F(~,  "y) for a _< "r < ;3, then ~-(~, ~3) can be recovered in M from NS~ [ A. 

| 

THEOREM 5.4: 

(1) If  there exists a measure over ,~ in IC( ~-) concentrating over (w, ~+)-repeat 

points (or up-repeat points), then in a generic extension NS sing is precipi- 

tous (or presaturated) over a measurable ~. 

(2) If  there exists an (w, ~+ + 1)-repeat point (or an up-repeat point) with a 

weak repeat point above it, then in a generic extension NS~ is precipitous 

(or presaturated) over a measurable ,~. 

Proo~ We deal with a precipitousness case. The presaturation case is similar, 

only the forcing of section 4 should be used. 

(1) Let a be an (w, ,~+)-repeat point for ~ over ,~ . The hypothesis is 

equivalent to the assertion that there is an (w, ~+)-repeat point such that  9r(~, a-{- 

~+) exists. (Note that  it need not exist for an arbitrary (w, ,~+)-repeat point.) 

Assume that  ~ is the least/5 so that  O ~ (8) = ~' + 8 + 1 for an (w,/5+)-repeat point 

~'. Let A = {8 < ~ I there exists an (w,/5+)-repeat point 8' < O~(/5) so that 

O~(8) = 8' + 8+}. Then A E ~'(~, a + ~+). Define the iterated forcing notion as 

follows. At every stage (5 E (~ + 1) - A use the forcing defined in section 3. For 

/5 E A, use the forcing of section 3 for making NS6 precipitous (i.e., the forcing 

used there over ~ itself). Such iteration preserves the cardinals since each forcing 

used on stage 8 for/5 ~ A is embeddible into Prikry type forcing notion. We refer 

to [G6] for this matter. In the final model ~'(~, a + ~+) extends to a normal 

ultrafilter, since the forcing which should be used over ,~ in the ultrapower by 

.~(a, a + a +) is the same as those used over ,~ in V. 

(2) Assume that ,~ is picked minimal carrying a weak repeat point above an 
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(W, ~+ + 1)-repeat point. Denote the (w, ~+ + 1) repeat point by a and a weak 

repeat point above it by ~. 

Define the iterated forcing notion as follows. For 5 < ~ without (w, 5 + + 1)- 

repeat point use the forcing of section 3. If/5 _< a has an (w, 5 + + 1)-repeat point 5 I, 

then use the forcing for shooting clubs of section 3 for the filter N{~'(5, ~/) [ 51 < 

< O*~(6)} which clearly is contained in the filter N{~'(5, ~/) [ 6' <_ ~ _< 5' + 6 + } 

used in section 3. 

The measure ~'(a, f~) extends in such generic extension since the filters 

N(~'(~, ~) [ a  _< ~ < Z} and N{~'(~, ~ ) [ a  _ ~, < f~} are the same, and so the 

forcing used over a in V is the forcing which should be used in the ultrapower 

by ~-(~, Z). II 

R e m a r k s :  

1. The question whether NS~ can be precipitous over a measurable was raised 

by Baumgartner-Taylor-Wagon [B-T-W]. Models with NS~ precipitous 

over a measurable were contracted first by Foreman-Magidor-Shelah [F-M- 

S] from a super-strong above supercompact and later from a supercompact 

alone in [G6]. 

2. It is possible to do the above constructions over a supercompact. Thus the 

strength of "NS~ is precipitous over a n+-supercompact cardinal n" can be 

reduced to n+-supercompact alone. 

. 

. 

. 

S o m e  o p e n  p r o b l e m s  

1. Is the existence of (w, < ~) or (w, ~) repeat point sufficient for a model with 

NS~ ~ or NS~ precipitous for an inaccessible ~? 

Does the precipitousness of NS~ over ~ > R3 imply an (w, A + 1) repeat 

point where ~ = A+? 

Does the saturatedness of NS~ ~ over an inaccessible ~ imply 3 a O ( a )  = a ++ 

in an inner model? 

4. Is it consistent "NS~ saturated over an inaccessible ~"? 

5. Is it consistent "NS~ ~ saturated over an inaccessible ~"? 

6. Is "NS~ precipitous and after the forcing with it ~ remains uncountable" 

weaker than up-repeat point? 

7. Is it consistent "NS~ (or NS~ ~ is densely saturated"? 



Vol. 92, 1995 RESULTS ON THE NONSTATIONARY IDEAL 111 

R e f e r e n c e s  

[B-T-W] 

[F-M-S] 

[G1] 

[G2] 

[G3] 

[c4] 

[G5] 

[G6] 

[J1] 

[J2] 

[J-M-M-P] 

[J-W] 

[K-M] 

[M] 

[Mill 

J. Baumgartner, A. Taylor and S. Wagon, On splitting stationary subsets 

of large cardinals, Journal of Symbolic Logic 42 (1977), 203-214. 

M. Foreman, M. Magidor and S. Shelah, Martin Maximum, saturated ideals 

and non-regular ultrafilters, Part 1, Annals of Mathematics 127 (1988), 1- 

47. 

M. Gitik, On nonminimal P-points over a measurable cardinal, Annals of 

Mathematical Logic 20 (1981), 269-288. 

M. Gitik, The nonstationary ideal on R2, Israel Journal of Mathematics 48 

(1984), 257-288. 

M. Gitik, Changing cofinalities and the nonstationary ideal, Israel Journal 

of Mathematics 56 (1986), 280-314. 

M. Gitik, The negation of the SCH from O(~) -- ~++, Annals of Pure and 

Applied Logic 43 (1989), 209-234. 

M. Gitik, On the Mitchell and Rudin-Keisler ordering of ultrafilters, Annals 

of Pure and Applied Logic 39 (1988), 175-197. 

M. Gitik, On precipitousness of the nonstationary ideal over a supercom- 

pact, Journal of Symbolic Logic 51 (1986), 648-662. 

T. Jech, Set Theory, Academic Press, New York, 1978. 

T. Jech, Stationary subsets of inaccessible cardinals, Contemporary 

Mathematics 31 (1984), 115-142. 

T. Jech, M. Magidor, W. Mitchell and K. Prikry, Precipitous ideals, Journal 

of Symbolic Logic 45 (1980), 1-8. 

T. Jech and H. Woodin, Saturation of the closed unbounded filter on the set 

of regular cardinals, Transactions of the American Mathematical Society 
292 (1985), 345-356. 

A. Kanamori and M. Magidor, The evolution of large cardinals in set 

theory, in Lecture Notes in Mathematics 669, Higher Set Theory 

(G. Mtiller and D. Scott, eds.), Springer-Verlag, Berlin, 1978, pp. 99-275. 

M. Magidor, Precipitous ideals and ~-~i 4 sets, Israel Journal of Mathematics 

35 (1980), 109-134. 

W. Mitchell, How weak is a closed unbounded ultrafilter?, in Logic Collo- 

quium 1980, Studies in Logic Vol. 108, North-Holland, Amsterdam, 1982, 
pp. 209-230. 



112 M. GITIK Isr. J. Math. 

[Mi2] 

[Mi3] 

[Mi4] 

IN] 

[rq 

[s] 

Is-v] 

[s-wl 

[w] 

[scl 

W. Mitchell, The core model for sequences of measures I, Mathematical 

Proceedings of the Cambridge Philosophical Society 95 (1984), 229-260. 

W. Mitchell, The core model for sequences of measures II, to appear. 

W. Mitchell, Applications of the covering/emma for sequences of measures, 

Transactions of the American Mathematical Society 299 (1987), 41-58. 

K. Namba, On the closed unbounded ideal of ordinal numbers, Comm. 

Math. Univ. St. Pauli 22 (1974), 33-56. 

L. Radin, Adding closed cofinal sequences to large cardinals, Annals of 

Mathematical Logic 23 (1982), 263-283. 

S. Shelah, Proper Forcing, Lecture Notes in Math. 940, Springer-Verlag, 

Berlin, 1982. 

J. Steel and R. Van Wesep, Two consequences of determinancy consis- 

tent with choice, Transactions of the American Mathematical Society 272 

(1982), 67-85. 

S. Shelah and H. Woodin, Forcing the failure of CH by adding a real, 

Journal of Symbolic Logic 49 (1984), I185-i189. 

H. Woodin, Some consistency results in ZF using AD, in Cabal Seminar 

79-81, Lecture Notes in Mathematics 1019, Springer-Verlag, Berlin, 1983, 

pp. 172-199. 

E. Schimmerling, Ph.D. thesis, UCLA, 1991. 


